Applied Physics A

, Volume 121, Issue 3, pp 915–938 | Cite as

Cinnabar alteration in archaeological wall paintings: an experimental and theoretical approach

  • Madeleine Kegelman Neiman
  • Magdalena Balonis
  • Ioanna Kakoulli
Invited Paper

Abstract

The red mineral pigment known as cinnabar (HgS) was commonly employed in Roman fresco wall paintings. Fresco artists of the period favored this pigment for its striking red color. However, upon excavation and exposure to air and light, cinnabar-pigmented surfaces recovered from archaeological contexts often proved to be unstable. Mural paintings colored with cinnabar that have been exposed in the open air frequently demonstrate a disfiguring, irreversible darkening of the surface. Traditionally, scholars have attributed this alteration to a light-induced phase change from red α-cinnabar to black β-cinnabar (meta-cinnabar). While this transformation has not been totally excluded, the prevailing view among conservation scientists is that chlorine plays a key role in the darkening process through the formation of light-sensitive mercury chloride compounds, or as a catalyst in the photochemical redox of Hg(II)S into Hg(0) and S(0). Using laboratory-based experiments and thermodynamic modeling, this paper attempts to further clarify the mechanism(s) and kinetics of cinnabar alteration in fresco applications, especially the role of light, humidity, and chlorine ions. Additionally, it explores possible pathways and preventive as well as remedial conservation treatments during or immediately following excavation, to inhibit or retard darkening of cinnabar-pigmented fresco surfaces.

References

  1. 1.
    P.W. Lehmann, Roman Wall Paintings from Boscoreale in the Metropolitan Museum of Art (Archaeological Institute of America, Cambridge, 1953)Google Scholar
  2. 2.
    J.R. Clarke, The Houses of Roman Italy, 100 B.C.-A.D. 250: Ritual, Space, and Decoration (University of California Press, Berkeley, 1991)Google Scholar
  3. 3.
    M. Bussagli, Rome, Art and Architecture (Könemann, Cologne, 1999)Google Scholar
  4. 4.
    A. Maiuri, Roman Painting. Trans. Stuart Gilbert (Skira, Geneva, Switzerland, 1953)Google Scholar
  5. 5.
    R. Ling, Roman Painting (Cambridge University Press, Cambridge, 1991)Google Scholar
  6. 6.
    E.M. Moormann, in Functional and Spatial Analysis of Wall Painting. Proceedings of the 5th International Congress on Ancient Wall Painting, Amsterdam, 8–12 September 1992 (Stichting Babesch, Leiden, 1993)Google Scholar
  7. 7.
    P. Mora, L. Mora, P. Philippot, The Conservation of Wall Paintings (Butterworth & Co., New York, 1984)Google Scholar
  8. 8.
    C. Arendt, in The Role of Architectural Fabric in the Preservation of Wall Paintings, ed. by S. Cather. The Conservation of Wall Paintings: Proceedings of a Symposium Organized by the Courtauld Institute of Art and the Getty Conservation Institute, London, July 13–16, 1987 (Getty Conservation Institute, Marina del Rey, CA, 1991)Google Scholar
  9. 9.
    A. Arnold, K. Zehnder, in Monitoring Wall Paintings Affected by Soluble Salts, ed. by S. Cather. The Conservation of Wall Paintings: Proceedings of a Symposium Organized by the Courtauld Institute of Art and the Getty Conservation Institute, London, July 13–16, 1987 (Getty Conservation Institute, Marina del Rey, CA, 1991)Google Scholar
  10. 10.
    M. Matteini, in Review: An Assessment of Florentine Methods of Wall Painting Conservation Based on the Use of Mineral Treatments. ed. by S. Cather, The Conservation of Wall Paintings: Proceedings of a Symposium Organized by the Courtauld Institute of Art and the Getty Conservation Institute, London, July 13–16, 1987 (Getty Conservation Institute, Marina del Rey, CA, 1991)Google Scholar
  11. 11.
    O. Ciferri, P. Tiano, G. Mastromei, Of Microbes and Art: The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage (Kluwer Academic/Plenum Publishers, New York, 2000)CrossRefGoogle Scholar
  12. 12.
    L. Dei, A. Ahle, P. Baglioni, D. Dini, E. Ferroni, Green degradation products of azurite in wall paintings: identification and conservation treatment. Stud. Conserv. 43, 80–88 (1998)CrossRefGoogle Scholar
  13. 13.
    S. Giovannoni, M. Matteini, A. Moles, Studies and developments concerning the problem of altered lead pigments in wall painting. Stud. Conserv. 35, 33–51 (1990)CrossRefGoogle Scholar
  14. 14.
    V. Daniels, R. Stacey, A. Middleton, The blackening of paint containing egyptian blue. Stud. Conserv. 49, 217–230 (2004)CrossRefGoogle Scholar
  15. 15.
    E. Minopoulou, A study of smalt and red lead discolouration in antiphonitis wall paintings in cyprus. Appl. Phys. Mater. Sci. Process. 96, 701–711 (2009)CrossRefADSGoogle Scholar
  16. 16.
    Pliny, The Elder Pliny’s Chapters on Chemical Subjects, ed. by K.C. Bailey (E. Arnold & Co., London, UK, 1929)Google Scholar
  17. 17.
    Vitruvius, The Ten Books on Architecture. Tran. H. M. Morgan (Dover Publications, New York, 1960)Google Scholar
  18. 18.
    R.J. Gettens, R.L. Feller, W.T. Chase, in ‘Vermillion and Cinnabar’, In Artists’ Pigments a Handbook of Their History and Characteristics. ed. by R.L. Feller, A. Roy, E. West FitzHugh, B. Hepburn Berrie (National Gallery of Art, Washington, 1986)Google Scholar
  19. 19.
    M. Cotte, J. Susini, N. Metrich, A. Moscato, C. Gratziu, A. Bertagnini, M. Pagano, Blackening of Pompeian cinnabar paintings: X-ray microspectroscopy analysis. Anal. Chem. 78, 7484–7492 (2006)CrossRefGoogle Scholar
  20. 20.
    R.L. Feller, Studies on the Darkening of Vermilion by Light. Report and Studies in the History of Art (National Gallery of Art, Washington, DC, 1967)Google Scholar
  21. 21.
    R.J. Gettens, R.L. Feller, W.T. Chase, Vermilion and cinnabar. Stud. Conserv. 17, 45–69 (1972)CrossRefGoogle Scholar
  22. 22.
    V. Daniels, R. Stacey, A. Middleton, in ‘The Blackening of Vermillion by Light’, In Recent Advances in Conservation and Analysis of Artifacts. ed. by J. Black (Summer School Press, London, UK, 1987)Google Scholar
  23. 23.
    M. Spring, R. Grout, The blackening of vermilion: an analytical study of the process in paintings. Natl. Gallery Tech. Bull. 23, 50–61 (2002)Google Scholar
  24. 24.
    R. Grout, A. Burnstock, A study of the blackening of vermilion. Zeitschrift für Kunsttechnologie und Konservierung 141, 15–22 (2000)Google Scholar
  25. 25.
    I. Istudor, A. Dina, G. Rosu, D. Seclaman, G. Niculescu, An alteration phenomenon of cinnabar red pigment in mural paintings from sucevita. E_Conservation 2, 24–33 (2007)Google Scholar
  26. 26.
    F.W. Dickson, G. Tunell, The stability of cinnabar and metacinnabar. Am. Minerol. 44, 471–487 (1959)Google Scholar
  27. 27.
    J.K. McCormack, The darkening of cinnabar in sunlight. Miner. Deposita 35, 796–798 (2000)CrossRefADSGoogle Scholar
  28. 28.
    J.K. McCormack, Mercury Sulf-Halide Minerals and Crystalline Phases, and Experimental Formation Conditions, in the System Hg 3 S 2 Cl 2 –Hg 3 S 2 Br 2 –Hg 3 S 2 I 2 (Thesis (Ph. D.)-University of Nevada, Reno, 1997)Google Scholar
  29. 29.
    M. Radepont, Understanding of Chemical Reactions Involved in Pigment Discoloration, in Particular in Mercury Sulfide (HgS) Blackening (PhD thesis, Universiteit Antwerpen, 2013)Google Scholar
  30. 30.
    F. Da Pieve, C. Hogan, D. Lamoen, J. Verbeeck, F. Vanmeert, M. Radepont, M. Cotte, K. Janssens, X. Gonze, G. Van Tendeloo, Casting light on the darkening of colors in historical paintings. Phys. Rev. Lett. 111 (2013). doi:10.1103/PhysRevLett.111.208302
  31. 31.
    H. Béarat, Chemical and mineralogical analyses of Gallo-Roman wall painting from Dietikon, Switzerland. Archaeometry 38, 81–95 (1996)CrossRefGoogle Scholar
  32. 32.
    J.K. McCormack, F.W. Dickson, M.P. Leshendok, Radtkeite, Hg 3 S 2 ClI, a new mineral from the McDermitt mercury deposit, Humboldt County, Nevada. Am. Mineral. 76, 1715–1721 (1991)Google Scholar
  33. 33.
    R.S. Davidson, C.J., Willsher C.J., The Light-induced Blackening of Red Mercury (II) Sulphide. Journal of the Chemical Society 1981, Dalton Transactions 3, 833-835Google Scholar
  34. 34.
    K. Keune, J.J. Boon, Analytical imaging studies clarifying the process of the darkening of vermilion in paintings. Anal. Chem. 77, 4742–4750 (2005)CrossRefGoogle Scholar
  35. 35.
    M. Cotte, J. Susini, J. Dik, K. Janssens, Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. Acc. Chem. Res. 46, 705–714 (2010)CrossRefGoogle Scholar
  36. 36.
    M. Radepont, W. de Nolf, K. Janssens, G. Van der Snickt, Y. Coquinot, L. Klaassen, M. Cotte, The use of microscopic X-ray diffraction for the study of HgS and its degradation products corderoite, kenhsuite and calomel in historical paintings. J. Anal. At. Spectrom. 26, 959–968 (2011)CrossRefGoogle Scholar
  37. 37.
    M. Radepont, Y. Coquinot, K. Janssens, J. Ezrati, W. de Nolf, M. Cotte, Thermodynamic and experimental study of the degradation of the red pigment mercury sulfide. J. Anal. At. Spectrom. 30, 599–612 (2015)CrossRefGoogle Scholar
  38. 38.
    M. Cotte, J. Susini, V.A. Solé, Y. Taniguchi, J. Chillida, E. Checroun, P. Walter, Applications of synchrotron-based micro-imaging techniques to the chemical analysis of ancient paintings. J. Anal. At. Spectrom. 23, 820–828 (2008)CrossRefGoogle Scholar
  39. 39.
    W. Anaf, K. Janssens, K. De Wael, Formation of metallic mercury during photodegradation/photodarkening of a-HgS: electrochemical evidence. Angew. Chem. 125, 12800–12803 (2013)CrossRefGoogle Scholar
  40. 40.
    K.L. Gauri, A.N. Chowdhury, N.P. Kulshreshtha, A.R. Punuru, The sulfation of marble and the treatment of gypsum crusts. Stud. Conserv. 34, 201–206 (1989)CrossRefGoogle Scholar
  41. 41.
    P. Ausset, R. Lefevre, J. Philippon, C. Venet, in Large-Scale Distribution of Fly-Ash Particles Inside Weathering Crusts on Calcium Carbonate Substrates: Some Examples on French Monuments, ed. by D. Decrouez, J. Chamay, F. Zezza. La Conservation des Monuments dans le Basin Méditerranéen: Actes du 2ème Symposium International = The Conservation of Monuments in the Mediterranean Basin: Proceedings of the 2nd International Symposium (Ville de Geneve, Museum d’histoire naturelle, and Muse d’art et d’histoire., Geneva, 1992), pp. 121–139Google Scholar
  42. 42.
    V. Fassina, in Atmospheric Pollutants Responsible for Stone Decay: Wet and Dry Surface Deposition of Air Pollutants on Stone and the Formation of Black Scabs, ed. by F. Zezza. Weathering and Air Pollution: Primo Corso Della Scuola Universitaria C.U.M. Conservazione dei Monumenti, Lago di Garda (Portese), Venezia, Milano, 2–9 Settembre 1991 (Mario Adda Editore, Bari, 1992), pp. 67–86Google Scholar
  43. 43.
    M. Tennikat, Blumenkohl-, Sinter-und Seidenglanzkruste: Salzkartierung und naturwissenschaftliche Erklärungen. Forschungsprojekt Wandmalerei-Schäden: ein Förderprojekt des Bundesministers für Forschung und Technologie: Schlußbericht zu den interdisziplinären Befunden. Niedersächsisches Landesverwaltungsamt, 1994, pp. 99–108Google Scholar
  44. 44.
    A.E. Charola, R. Ware, in Acid Deposition and the Deterioration of Stone: A Brief Review of a Broad Topic, ed by S. Siegesmund, T. Weiss, A. Vollbrech. Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies, Geological Society Special Publications 205 (Geological Society of London, London, 2002), pp. 393–406Google Scholar
  45. 45.
    A.E. Charola, J. Pühringer, M. Steiger, Gypsum: a review of its role in the deterioration of building materials. Environ. Geol. 52, 339–352 (2007)CrossRefADSGoogle Scholar
  46. 46.
    L. Toniolo, C.M. Zerbi, R. Bugini, Black layers on historical architecture. Environ. Sci. Pollut. Res. 16, 218–226 (2009)CrossRefGoogle Scholar
  47. 47.
    F.E. Doehne, C.A. Price, in Stone Conservation: An Overview of Current Research (Getty Conservation Institute, Los Angeles, California, 2010)Google Scholar
  48. 48.
    M. Perez-Alanso, K. Castro, M. Alvarez, J.M. Madariaga, Investigation of degradation mechanisms by portable Raman spectroscopy and thermodynamic speciation: the wall paining of Santa Maria de Lemoniz (Basque County, North of Spain). Anal. Chim. Acta. 571, 121–128 (2006)CrossRefGoogle Scholar
  49. 49.
    R.M. Dreyer, Darkening of Cinnabar in Sunlight. Am. Mineral. 23, 796–798 (1938)Google Scholar
  50. 50.
    R. Johnston-Feller, Color science in the Examination of Museum Objects Nondestructive Procedures (Getty Conservation Institute, Los Angeles, 2001)Google Scholar
  51. 51.
    D. Kulik, U. Berner, E. Curti, Modelling chemical equilibrium partitioning with the GEMS-PSI code, vol 4. PSI Scientific Report, http://gems.web.psi.ch. 2003, pp. 109–122
  52. 52.
    G.A. Parks, D.K. Nordstrom, Estimated free energies of formation, water solubilities, and stability fields for schuetteite (Hg3O2SO4) and corderoite (Hg3S2Cl2) at 298 K. Chem. Model. Aqueous Syst. 93, 339–352 (1979)CrossRefGoogle Scholar
  53. 53.
    C.J. Barta, Z. Bryknar, M. Procio, Photosensitivity of mercurous chloride single crystals in 280–400 nm spectral region. Czechoslovak J. Phys. B 37, 1301–1310 (1987)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Madeleine Kegelman Neiman
    • 1
  • Magdalena Balonis
    • 2
    • 3
  • Ioanna Kakoulli
    • 4
    • 5
  1. 1.UCLA-Getty Conservation ProgramUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  3. 3.Institute for Technology AdvancementUniversity of CaliforniaLos AngelesUSA
  4. 4.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  5. 5.UCLA/Getty Conservation Program and Cotsen Institute of ArchaeologyUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations