Applied Physics A

, Volume 121, Issue 2, pp 327–333 | Cite as

Nanoimprint lithography: an enabling technology for nanophotonics

  • Yuhan Yao
  • He Liu
  • Yifei Wang
  • Yuanrui Li
  • Boxiang Song
  • Alexandre Bratkovsk
  • Shih-Yuan Wang
  • Wei Wu
Invited Paper

Abstract

Nanoimprint lithography (NIL) is an indispensable tool to realize a fast and accurate nanoscale patterning in nanophotonics due to high resolution and high yield. The number of publication on NIL has increased from less than a hundred per year to over three thousand per year. In this paper, the most recent developments on NIL patterning transfer processes and its applications on nanophotonics are discussed and reviewed. NIL has been opening up new opportunities for nanophotonics, especially in fabricating optical meta-materials. With more researches on this low-cost high-throughput fabrication technology, we should anticipate a brighter future for nanophotonics and NIL.

References

  1. 1.
    F. Flory, L. Escoubas, G. Berginc, Optical properties of nanostructured materials: a review. J. Nanophotonics 5(1), 052502–0525020 (2011)CrossRefADSGoogle Scholar
  2. 2.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67(21), 3114–3116 (1995)CrossRefADSGoogle Scholar
  3. 3.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography. J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996)CrossRefGoogle Scholar
  4. 4.
    Hoefflinger, B., ITRS: The International Technology Roadmap for Semiconductors, in Chips 2020, ed by B. Hoefflinger, (Springer, Berlin, Heidelberg, 2012). pp. 161–174Google Scholar
  5. 5.
    M.D. Levenson, N. Viswanathan, R.A. Simpson, Improving resolution in photolithography with a phase-shifting mask. IEEE Electron Devices Trans. 29(12), 1828–1836 (1982)CrossRefADSGoogle Scholar
  6. 6.
    C. Vieu et al., Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164(1), 111–117 (2000)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    I. Divliansky et al., Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography. Appl. Phys. Lett. 82(11), 1667–1669 (2003)CrossRefADSGoogle Scholar
  8. 8.
    H.X. Ge et al., Cross-linked polymer replica of a nanoimprint mold at 30 nm half-pitch. Nano Lett. 5(1), 179–182 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Y.-P. Chen et al., Fabrication of concave gratings by curved surface UV-nanoimprint lithography. J. Vac. Sci. Technol. B 26(5), 1690–1695 (2008)CrossRefGoogle Scholar
  10. 10.
    Z. Li et al., Hybrid nanoimprint—soft lithography with sub-15 nm resolution. Nano Lett. 9(6), 2306–2310 (2009)CrossRefADSGoogle Scholar
  11. 11.
    M. Colburn et al., Proc. SPIE 3676, 379–389 (1999)CrossRefADSGoogle Scholar
  12. 12.
    J. Haisma et al., Mold-assisted nanolithography: a process for reliable pattern replication. J. Vac. Sci. Technol. B 14(6), 4124–4128 (1996)CrossRefGoogle Scholar
  13. 13.
    Z. Yu et al., Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography. J. Vac. Sci. Technol. B 21(5), 2089–2092 (2003)CrossRefGoogle Scholar
  14. 14.
    Chou, S., Z. Yu, W. Wu, Articles comprising nanoscale patterns with reduced edge roughness and methods of making same, 2003, US Patent App. 10/732,038Google Scholar
  15. 15.
    Yao, Y., et al., Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography. Appl. Phys. A, 1–5 (2015). doi:10.1007/s00339-015-9278-x
  16. 16.
    R.A. Wind, M.A. Hines, Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy. Surf. Sci. 460(1), 21–38 (2000)CrossRefADSGoogle Scholar
  17. 17.
    F. Meng et al., Replication of large area nanoimprint stamp with small critical dimension loss. Sci. China Technol. Sci. 55(3), 600–605 (2012)CrossRefGoogle Scholar
  18. 18.
    S.M. Spillane et al., Fabrication of nanophotonic structures for information processing. In: Proceedings of the SPIE 6883, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics, 688302 (2008)Google Scholar
  19. 19.
    H. Tan, A. Gilbertson, S.Y. Chou, Roller nanoimprint lithography. J. Vac. Sci. Technol. B 16(6), 3926–3928 (1998)CrossRefGoogle Scholar
  20. 20.
    S.H. Ahn, L.J. Guo, Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3(8), 2304–2310 (2009)CrossRefGoogle Scholar
  21. 21.
    N.I. Zheludev, The road ahead for metamaterials. Science 328(5978), 582–583 (2010)CrossRefADSGoogle Scholar
  22. 22.
    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov. Phys. Usp. 10(4), 509–514 (1968)CrossRefADSGoogle Scholar
  23. 23.
    D.R. Smith et al., Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)CrossRefADSGoogle Scholar
  24. 24.
    R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001)CrossRefADSGoogle Scholar
  25. 25.
    V.M. Shalaev et al., Negative index of refraction in optical metamaterials. Opt. Lett. 30(24), 3356–3358 (2005)CrossRefADSGoogle Scholar
  26. 26.
    S. Zhang et al., Near-infrared double negative metamaterials. Opt. Express 13(13), 4922–4930 (2005)CrossRefADSGoogle Scholar
  27. 27.
    S. Zhang et al., Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95(13), 137404 (2005)Google Scholar
  28. 28.
    G. Dolling et al., Simultaneous negative phase and group velocity of light in a metamaterial. Science 312(5775), 892–894 (2006)CrossRefADSGoogle Scholar
  29. 29.
    W. Wu et al., Midinfrared metamaterials fabricated by nanoimprint lithography. Appl. Phys. Lett. 90(6), 063107 (2007)CrossRefADSGoogle Scholar
  30. 30.
    W. Wu et al., Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography. Appl. Phys. Mater. Sci. Process. 87(2), 143–150 (2007)CrossRefADSGoogle Scholar
  31. 31.
    W. Wu et al., Geometrical dependence of optical negative index meta-materials at 1.55 μm. Appl. Phys. A 95(4), 1119–1122 (2009)CrossRefADSGoogle Scholar
  32. 32.
    E. Kim et al., Modulation of negative index metamaterials in the near-IR range. Appl. Phys. Lett. 91(17), 173105 (2007)CrossRefADSGoogle Scholar
  33. 33.
    D.J. Cho et al., Ultrafast modulation of optical metamaterials. Opt. Express 17(20), 17652–17657 (2009)CrossRefADSGoogle Scholar
  34. 34.
    E. Kim et al., Nonlinear optical spectroscopy of photonic metamaterials. Phys. Rev. B (Condens. Matter Mater. Phys.) 78(11), 113102 (2008)CrossRefADSGoogle Scholar
  35. 35.
    Y. Yao, H. Liu, W. Wu, Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting. Appl. Phys. A 115(3), 713–719 (2014)CrossRefADSGoogle Scholar
  36. 36.
    Y. Yao, H. Liu, W. Wu, Fabrication of high-contrast gratings for a parallel spectrum splitting dispersive element in a concentrated photovoltaic system. J. Vac. Sci. Technol. B 32(6), 6 (2014)CrossRefGoogle Scholar
  37. 37.
    W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)CrossRefADSGoogle Scholar
  38. 38.
    V. Karagodsky, F.G. Sedgwick, C.J. Chang-Hasnain, Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 18(16), 16973–16988 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yuhan Yao
    • 1
  • He Liu
    • 1
  • Yifei Wang
    • 1
  • Yuanrui Li
    • 1
  • Boxiang Song
    • 1
  • Alexandre Bratkovsk
    • 2
  • Shih-Yuan Wang
    • 3
  • Wei Wu
    • 1
  1. 1.University of Southern CaliforniaLos AngelesUSA
  2. 2.Corning Inc.CorningUSA
  3. 3.WWSens Devices Inc.Los AltosUSA

Personalised recommendations