Skip to main content
Log in

The effects of strain rate and temperature on commercial acrylic artist paints aged one year to decades

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Acrylic artist paints are viscoelastic composites containing a high molecular weight copolymer, pigment and a variety of additives. The glass transition temperature of the latex binder is typically slightly below ambient conditions, giving mechanical properties that are strongly dependent on strain rate and temperature. In previous work, the viscoelastic behaviour of custom-formulated latex artist paints was reported for films with known volume fractions of pigment using data from uniaxial tensile tests at different strain rates and temperatures. Secant Young’s modulus and failure strain master curves were constructed for each film through time-temperature superposition, allowing predictions beyond the experimental timescale at a selected reference temperature. A similar analysis is now presented for a small set of commercial artist paints tested at ages of 1 and 27 years. Experimental shift factor values are reported with fits to the Arrhenius, WLF and Vogel Fulcher equations, along with a comparison with published data for acrylic polymers. The tensile results highlight a spectrum of properties that acrylic paints may exhibit—brittle glass to hyperelastic—depending on the conditions during deformation. Strong similarities are shown between products from different manufacturers, and the findings suggest a high degree of stability with age. A method for predicting failure as a function of strain rate and temperature is also presented, and the methodology gives a framework for investigating other artist materials and the factors influencing their mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.F. Mecklenburg, C.S. Tumosa, in Art in Transit: Studies in the Transport of Paintings, ed. by M.F. Mecklenburg (National Gallery of Art, Washington, 1991), pp. 137–171

    Google Scholar 

  2. M.F. Mecklenburg, C.S. Tumosa, in Art in Transit: Studies in the Transport of Paintings, ed. by M.F. Mecklenburg (National Gallery of Art, Washington, 1991), pp. 173–216

    Google Scholar 

  3. J.D. Erlebacher, E. Brown, M.F. Mecklenburg, C.S. Tumosa, in Materials Research Society Symposium Proceedings, vol. 267, ed. by P.B. Vandiver, J.R. Druzik, G.S. Wheeler, I.C. Freestone (Materials Research Society, Pittsburgh, 1992), pp. 359–370

  4. M.F. Mecklenburg, C.S. Tumosa, J.D. Erlebacher, Polym. Prepr. 35(2), 297 (1994)

    Google Scholar 

  5. M.F. Mecklenburg, C.S. Tumosa, ASHRAE J. 41(4), 77 (1999)

    Google Scholar 

  6. M.F. Mecklenburg, in Preprints of the International Conference on Painting Conservation: Canvases–Behaviour, Deterioration and Treatment, ed. by M.C. Ahusti, M. Martin Rey, V. Guerola Blay (Universitat Politècnica de València, 2005), pp. 119–155

  7. M.F. Mecklenburg, C.S. Tumosa, D. Erhardt, in Materials Research Society Symposium: Materials Issues in Art and Archaeology VII, vol. 852, ed. by P.B. Vandiver, J.L. Mass, A. Murray (Materials Research Society, Warrendale, 2005), pp. 13–24

  8. S. Tantideeravit, M.N. Charalambides, D.S. Balint, C.R.T. Young, Eng. Fract. Mech. 112, 41 (2013)

    Article  Google Scholar 

  9. M.F. Mecklenburg, Art in Transit: Studies in the Transport of Paintings (National Gallery of Art, Washington, 1991)

    Google Scholar 

  10. S. Michalski, in Art in Transit: Studies in the Transport of Paintings, ed. by M.F. Mecklenburg (National Gallery of Art, Washington, 1991), pp. 223–248

    Google Scholar 

  11. S. Michalski, D. Daly Hartin, in Preprints of the ICOM Committee for Conservation, 11th Triennial Meeting, ed. by J. Bridgland (James and James Ltd, London, 1996), pp. 288–296

  12. D. Daly Hartin, E.W.S. Hagan, S. Michalski, M. Choquette, in Preprints of the ICOM Committee for Conservation, 16th Triennial Meeting, ed. by J. Bridgland (Critério, Almada, Portugal, 2011), pp. 1–9

  13. E.W.S. Hagan, M.N. Charalambides, C.R.T. Young, T.J.S. Learner, S. Hackney, Mech. Time Depend. Mater. 13(2), 149 (2009)

    Article  ADS  Google Scholar 

  14. E.W.S. Hagan, M.N. Charalambides, C.R.T. Young, T.J.S. Learner, S. Hackney, Prog. Org. Coat. 69(1), 73 (2010)

    Article  Google Scholar 

  15. E.W.S. Hagan, M.N. Charalambides, C.R.T. Young, T.J.S. Learner, S. Hackney, Polymer 52(7), 1662 (2011)

    Article  Google Scholar 

  16. B. Ormsby, G. Foster, T. Learner, S. Ritchie, M. Schilling, J. Therm. Anal. Calorim. 90(2), 503 (2007)

    Article  Google Scholar 

  17. M.F. Mecklenburg, in Personal communication (Smithsonian Institution, 2006)

  18. M.C. Celina, Polym. Degrad. Stab. 98(12), 2419 (2013)

    Article  Google Scholar 

  19. T. Learner, O. Chiantore, D. Scalarone, in Preprints of the ICOM Committee for Conservation, 13th Triennial Meeting, vol. II, ed. by R. Vontobel (James and James Ltd, London, 2002), pp. 911–919

  20. O. Chiantore, M. Lazzari, Polymer 42(1), 17 (2001)

    Article  Google Scholar 

  21. D. Scalarone, O. Chiantore, T. Learner, in Preprints of the ICOM Committee for Conservation, 14th Triennial Meeting, vol. I, ed. by I. Verger (James and James Ltd, London, 2005), pp. 350–357

  22. G.D. Smith, in Modern Paints Uncovered, ed. by T.J.S. Learner, P. Smithen, J.W. Krueger, M.R. Schilling (Getty Conservation Institute, Los Angeles, 2008), pp. 236–246

  23. J.L. Keddie, Mater. Sci. Eng. R Rep. 21(3), 101 (1997)

    Article  Google Scholar 

  24. P.A. Steward, J. Hearn, M.C. Wilkinson, Adv. Colloid Interface Sci. 86(3), 195 (2000)

    Article  Google Scholar 

  25. E. Kientz, Y. Holl, Colloids Surf Physicochem. Eng. Asp. 78(15), 255 (1993)

    Article  Google Scholar 

  26. A. Tzitzinou, P.M. Jenneson, A.S. Clough, J.L. Keddie, J.R. Lu, P. Zhdan, K.E. Treacher, R. Satguru, Prog. Org. Coat. 35(1-4), 89–99 (1999)

    Article  Google Scholar 

  27. A.C. Hellgren, P. Weissenborn, K. Holmberg, Prog. Org. Coat. 35(1–4), 79 (1999)

    Article  Google Scholar 

  28. L.R.G. Treloar, The Physics of Rubber Elasticity, 3rd edn. (Oxford University Press, Oxford, 1975)

    Google Scholar 

  29. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edn. (Wiley, New York, 1980)

    Google Scholar 

  30. N.W. Tschoegl, Mech. Time Depend. Mater. 1, 3 (1997)

    Article  ADS  Google Scholar 

  31. M.L. Williams, R.F. Landel, J.D. Ferry, J. Am. Chem. Soc. 77(14), 3701 (1955)

    Article  Google Scholar 

  32. G.P. Tandon, G.J. Weng, Polym. Compos. 5(4), 327 (1984)

    Article  Google Scholar 

  33. B.E. Clements, E.M. Mas, J. Appl. Phys. 90(11), 5522 (2001)

    Article  ADS  Google Scholar 

  34. E.M. Mas, B.E. Clements, J. Appl. Phys. 90(11), 5535 (2001)

    Article  ADS  Google Scholar 

  35. L. Struik, Polym. Eng. Sci. 17(3), 165 (1977)

    Article  MathSciNet  Google Scholar 

  36. Q. Qin, G.B. McKenna, J Non Cryst. Solids 352(28–29), 2977 (2006)

    Article  ADS  Google Scholar 

  37. L. Dadug, J Phy. Condens. Matter 12(46), 9573 (2000)

    Article  ADS  Google Scholar 

  38. X. He, J. Wu, G. Huang, X. Wang, J Macromol. Sci. Part B Phys. 50(1), 188 (2011)

    Article  Google Scholar 

  39. O. Chiantore, D. Scalarone, T. Learner, Int. J. Polym. Anal. Charact. 8(1), 67 (2003)

    Article  Google Scholar 

  40. L. Andreozzi, V. Castelvetro, M. Faetti, M. Giordano, F. Zulli, Macromolecules 39(5), 1880 (2006)

    Article  ADS  Google Scholar 

  41. L. Andreozzi, C. Autiero, M. Faetti, M. Giordano, F. Zulli, J. Phys. Condens. Matter 18(28), 6481 (2006)

    Article  ADS  Google Scholar 

  42. B.A. Ormsby, E. Hagan, P. Smithen, T.J.S. Learner, in Preparation for Painting: The Artist’s Choice and its Consequences, ed. by J. Townsend, T. Doherty, G. Heydenreich, J. Ridge (Archetype, London, 2008), pp. 163–171

    Google Scholar 

  43. C.R.T. Young, E. Hagan, in Preparation for Painting: The Artist’s Choice and its Consequences, ed. by J. Townsend, T. Doherty, G. Heydenreich, J. Ridge (Archetype, London, 2008), pp. 172–179

    Google Scholar 

  44. T.L. Smith, P.J. Stedry, J. Appl. Phys. 31(11), 1892 (1960)

    Article  ADS  Google Scholar 

  45. T.L. Smith, ASTM Materials Science. Series 3, 60 (1962)

    Google Scholar 

  46. T.L. Smith, J. Polym. Sci. Part A General Papers 1(12), 3597 (1963)

    Article  Google Scholar 

  47. T.L. Smith, R.A. Dickie, Rubber Chem. Technol. 42(5), 1257 (1969)

    Article  Google Scholar 

  48. H.F. Brinson, L.C. Brinson, Polymer Engineering Science and Viscoelasticity: An Introduction (Springer, Berlin, 2007)

    Google Scholar 

  49. R.D. Maksimov, V.P. Mochalov, Y.S. Urzhumtsev, Mech. Compos. Mater. 8(5), 1573 (1972)

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Tate, the Deborah Loeb Brice foundation and the Natural Sciences and Engineering Research Council of Canada (NSERC) for sponsoring this project. We also greatly appreciate the sharing of samples and data files by Marion Mecklenburg at the Smithsonian Institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W. S. Hagan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagan, E.W.S., Charalambides, M.N., Young, C.R.T. et al. The effects of strain rate and temperature on commercial acrylic artist paints aged one year to decades. Appl. Phys. A 121, 823–835 (2015). https://doi.org/10.1007/s00339-015-9423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9423-6

Keywords

Navigation