Skip to main content

Advertisement

Log in

Au nanoparticle-decorated ultrathin CdS nanowires for high-efficiency photodegradation of organic dyes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CdS nanowires (NWs) are obtained by the sulfurization of Cd(OH)2 nanowires at room temperature using H2S. The CdS NWs with diameter of 2–5 nm exhibit high photocatalytic performance due to the ultrafine size. To further improve the performance, Au nanoparticles (NPs) with different sizes, i.e., 5, 20, 40 and 100 nm, that decorated the CdS NWs are synthesized through a simple self-assembly and solid sulfuration process. The synthesized Au NPs–CdS NWs hybrids show higher photocatalytic efficiency than that of pure CdS NWs. Furthermore, 20 nm Au NPs–CdS NWs hybrids with an optimal Au loading of 3.2 wt% exhibit the highest photocatalytic efficiency. Both the enhanced separation of photoinduced hole–electron pairs and the absorption of visible light by incorporating Au NPs significantly improve the photocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. X.A. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 9, 76 (2009)

    Article  ADS  Google Scholar 

  2. S. Roy, M.S. Hegde, N. Ravishankar, G. Madras, J. Phys. Chem. C 111, 8153 (2007)

    Article  Google Scholar 

  3. M.S. Chen, D.W. Goodman, Chem. Soc. Rev. 37, 1860 (2008)

    Article  Google Scholar 

  4. L.W. Zhang, H.B. Fu, Y.F. Zhu, Adv. Funct. Mater. 18, 2180 (2008)

    Article  Google Scholar 

  5. H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, ACS Nano 4, 380 (2010)

    Article  Google Scholar 

  6. V. Schwartz, D.R. Mullins, W.F. Yan, B. Chen, S. Dai, S.H. Overbury, J. Phys. Chem. B 108, 15782 (2004)

    Article  Google Scholar 

  7. M.J. Batista, A. Kubacka, M.F. Garcia, ACS Catal. 4, 4277 (2014)

    Article  Google Scholar 

  8. S.C. Han, L.F. Hu, N. Gao, A.A. Ghamdi, X.S. Fang, Adv. Funct. Mater. 24, 3725 (2014)

    Article  Google Scholar 

  9. X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Chem. Rev. 110, 6503 (2010)

    Article  Google Scholar 

  10. A.T. Yeh, C.V. Shank, J.K. McCusker, Science 289, 935 (2000)

    Article  ADS  Google Scholar 

  11. H.W. Tseng, M.B. Wilker, N.H. Damrauer, G. Dukovic, J. Am. Chem. Soc. 135, 3383 (2013)

    Article  Google Scholar 

  12. V. Subramanian, E.E. Wolf, P.V. Kamat, J. Am. Chem. Soc. 126, 4943 (2004)

    Article  Google Scholar 

  13. X.J. Lang, H.W. Ji, C.C. Chen, W.H. Ma, J.C. Zhao, Angew. Chem. Int. Ed. 50, 3934 (2011)

    Article  Google Scholar 

  14. Y.T. Liang, B.J. Vijayan, K.A. Gray, M.C. Hersam, Nano Lett. 11, 2865 (2011)

    Article  Google Scholar 

  15. Y.C. Zhang, J. Li, M. Zhang, D.D. Dionysiou, Environ. Sci. Technol. 45, 9324 (2011)

    Article  ADS  Google Scholar 

  16. G. Manna, R. Bose, N. Pradhan, Angew. Chem. Int. Ed. 53, 1 (2014)

    Article  Google Scholar 

  17. N. Zhang, S.Q. Liu, X.Z. Fu, Y.J. Xu, J. Phys. Chem. C 115, 9136 (2011)

    Article  Google Scholar 

  18. X. Zong, G.P. Wu, H.J. Yan, G.J. Ma, J.Y. Shi, F.Y. Wen, L. Wang, C. Li, J. Phys. Chem. C 114, 1963 (2010)

    Article  Google Scholar 

  19. P. Gao, J.C. Liu, S.S. Lee, T. Zhang, D.D. Sun, J. Mater. Chem. 22, 2292 (2012)

    Article  Google Scholar 

  20. Z.B. Yu, Y.P. Xie, G. Liu, G.Q. Lu, X.L. Ma, H.M. Cheng, J. Mater. Chem. A 1, 2773 (2013)

    Article  Google Scholar 

  21. A.E. Saunders, I. Popov, U. Banin, J. Phys. Chem. B 110, 25421 (2006)

    Article  Google Scholar 

  22. W.T. Chen, T.T. Yang, Y.J. Hsu, Chem. Mater. 20, 7204 (2008)

    Article  Google Scholar 

  23. P.V. Kamat, B. Shanghavi, J. Phys. Chem. B 101, 7675 (1997)

    Article  Google Scholar 

  24. S.Q. Liu, Y.J. Xu, Nanoscale 5, 9330 (2013)

    Article  ADS  Google Scholar 

  25. X. Ma, K. Zhao, H.J. Tang, Y. Chen, C.G. Lu, W. Liu, Y. Gao, H.J. Zhao, Z.Y. Tang, Small 10, 4664 (2014)

    Article  Google Scholar 

  26. M. Murdoch, G.I.N. Waterhouse, M.A. Nadeem, J.B. Metson, M.A. Keane, R.F. Howe, J. Llorca, H. Idriss, Nat. Chem. 3, 489 (2011)

    Google Scholar 

  27. C. Yogi, K. Kojima, T. Hashishin, N. Wada, Y. Inada, E.D. Gaspera, M. Bersani, A. Martucci, L.J. Liu, T.K. Sham, J. Phys. Chem. C 115, 6554 (2011)

    Article  Google Scholar 

  28. N.Z. Bao, L.M. Shen, T. Takata, D.L. Lu, K. Domen, Chem. Lett. 35, 318 (2006)

    Article  Google Scholar 

  29. I. Ichinose, K. Kurashima, T. Kunitake, J. Am. Chem. Soc. 126, 7162 (2004)

    Article  Google Scholar 

  30. X.Y. Wang, Y.L. Ying, J.H. Lei, P. Hu, X.S. Peng, RSC. Adv. 4, 42441 (2014)

    Article  Google Scholar 

  31. E. Shaviv, O. Schbert, M.A. Santos, G. Goldoni, R.D. Felice, F. Vallee, N.D. Fatti, U. Banin, C. Sonnichsen, ACS Nano 5, 4712 (2011)

    Article  Google Scholar 

  32. R.A. Reynolds, C.A. Mirkin, R.L. Letsinger, J. Am. Chem. Soc. 122, 3795 (2000)

    Article  Google Scholar 

  33. G. Manna, R. Bose, N. Pradhan, Angew. Chem. Int. Ed. 53, 1 (2014)

    Article  Google Scholar 

  34. D. Mongin, E. Shaviv, P. Maioli, A. Crut, U. Banin, N.D. Fatti, F. Vallee, ACS Nano 6, 7034 (2012)

    Article  Google Scholar 

  35. E. Khon, A. Mereshchenko, A.N. Tarnovsky, K. Acharya, A. Klinkova, N.N. Hewa-Kasakarage, I. Nemitz, M. Zamkov, Nano Lett. 11, 1792 (2011)

    Article  ADS  Google Scholar 

  36. K.F. Wu, W.E. Rodriguez-Cordoba, Y. Yang, T.Q. Lian, Nano Lett. 13, 5255 (2013)

    Article  ADS  Google Scholar 

  37. J.Y. Zhang, Y.H. Wang, J. Zhang, Z. Lin, F. Huang, J.G. Yu, A.C.S. Appl, Mater. Interfaces 5, 1031 (2013)

    Article  Google Scholar 

  38. Y. Liu, Y.X. Yu, W.D. Zhang, J. Alloy. Compd. 569, 102 (2013)

    Article  Google Scholar 

  39. X.L. Xing, R.J. Liu, X.L. Yu, G.J. Zhang, H.B. Gao, J.N. Yao, B.Z. Ren, Z.X. Jiang, H. Zhao, J. Mater. Chem. A 1, 1488 (2013)

    Article  Google Scholar 

  40. T.T. Yang, W.T. Chen, Y.J. Hsu, K.H. Wei, T.Y. Lin, T.W. Lin, J. Phys. Chem. C 114, 11414 (2010)

    Article  Google Scholar 

  41. M. Lin, X.F. Yu, S. Liang, X.N. Peng, Z.J. Yang, Y.L. Wang, Q.Q. Wang, Adv. Funct. Mater. 21, 1788 (2011)

    Article  Google Scholar 

  42. A. Stephen, K. Hashmi, G.J. Hutchings, Angew. Chem. Int. Ed. 45, 7896 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation for Outstanding Young Scientist of Zhejiang Province, China (LR14E020001), the National Basic Research Program of China 973 Program (2015CB655302) and the National Natural Science Foundations of China (NSFC 21271154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinsheng Peng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ying, Y., Hu, P. et al. Au nanoparticle-decorated ultrathin CdS nanowires for high-efficiency photodegradation of organic dyes. Appl. Phys. A 120, 1291–1297 (2015). https://doi.org/10.1007/s00339-015-9382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9382-y

Keywords

Navigation