Skip to main content

Neutron radiography for the study of water uptake in painting canvases and preparation layers


Easel paintings on canvas are subjected to alteration mechanisms triggered or accelerated by moisture. For the study of the spatial distribution and kinetics of such interactions, a moisture exposure chamber was designed and built to perform neutron radiography experiments. Multilayered sized and primed canvas samples were prepared for time-resolved experiments in the ICON cold neutron beamline. The first results show that the set-up gives a good contrast and sufficient resolution to visualise the water uptake in the layers of canvas, size and priming. The results allow, for the first time, real-time visualisation of the interaction of water vapour with such layered systems. This offers important new opportunities for relevant, spatially and time-resolved material behaviour studies and opens the way towards numerical modelling of the process. These first results show that cellulose fibres and glue sizing have a much stronger water uptake than the chalk–glue ground. Additionally, it shows that the uptake rate is not uniform throughout the thickness of the sized canvas. With prolonged moisture exposure, a higher amount of water is accumulating at the lower edge of the canvas weave suggesting a decrease in permeability in the sized canvas with increased water content.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. G. Thomson, The Museum Environment (Butterworths, in Association with the International Institute for Conservation of Historic and Artistic Works, London, 1978)

  2. J.D. Van Den Berg, K.J. Van Den Berg, J.J. Boon, in 12th Triennial Meeting of the ICOM Committee for Conservation Triennial Meeting, Lyon, 29 August–3 September 1999: preprints, vol. 1 (James & James, London, 1999), pp. 248–253

  3. D. Saunders, J. Kirby, Natl. Gallery Tech. Bull. 25, 62 (2004)

    Google Scholar 

  4. K. Keune, J.J. Boon, R. Boitelle, Y. Shimadzu, Stud. Conserv. 58, 199 (2013)

    Article  Google Scholar 

  5. K. Keune, J. Boon, J. Bridgland, in 16th ICOM-CC Triennial Conference, Lisbon, 19th–23th September 2011, Contribution 1609, pp. 1–7

  6. E. Ordonez, J. Twilley, Anal. Chem. 69(13), 416A–422A (1997)

    Article  Google Scholar 

  7. G. Hedley, Stud. Conserv. 33, 133 (1988)

    Article  Google Scholar 

  8. M.F. Mecklenburg, Determining the Acceptable Ranges of Relative Humidity and Temperature in Museums and Galleries. Part 1. Structural Response to Relative Humidity (Smithsonian Museum Conservation Institute, Maryland, unpublished report, 2007)

  9. A.P. Kaestner, S. Hartmann, G. Kühne, G. Frei, C. Grünzweig, L. Josic, F. Schmid, E.H. Lehmann, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 659, 387 (2011)

    Article  ADS  Google Scholar 

  10. T. Defraeye, D. Derome, W. Aregawi, D. Cantré, S. Hartmann, E. Lehmann, J. Carmeliet, F. Voisard, P. Verboven, B. Nicolai, Planta 240, 423 (2014)

    Article  Google Scholar 

  11. S.J. Sanabria, C. Lanvermann, F. Michel, D. Mannes, P. Niemz, Exp. Mech. 55, 403 (2014)

    Article  Google Scholar 

  12. W. Sonderegger, D. Mannes, A. Kaestner, J. Hovind, E. Lehmann, Holzforschung 69, 87 (2015)

    Article  Google Scholar 

  13. D. Mannes, S. Sanabria, M. Funk, R. Wimmer, K. Kranitz, P. Niemz, Wood Sci. Technol. 48, 591 (2014)

    Article  Google Scholar 

  14. B. Schillinger, E. Calzada, C. Eulenkamp, G. Jordan, W.W. Schmahl, Nucl. Instrum. Methods A 651, 312 (2011)

    Article  ADS  Google Scholar 

  15. A.J. Gilbert, M.R. Deinert, Nucl. Instrum. Methods B 301, 23 (2013)

    Article  ADS  Google Scholar 

  16. I.M. Fijal-Kirejczyk, J.J. Milczarek, M.J. Radebe, F.C. de Beer, G. Nothnagel, J. Żolądek-Nowak, Dry. Technol. 31, 872 (2013)

    Article  Google Scholar 

  17. C.-L. Cheng, E. Perfect, B. Donnelly, H.Z. Bilheux, A.S. Tremsin, L.D. McKay, V.H. DiStefano, J.C. Cai, L.J. Santodonato, Adv. Water Resour. 77, 82 (2015)

    Article  ADS  Google Scholar 

  18. S. Lal, L.D. Poulikakos, M.S. Gilani, I. Jerjen, P. Vontobel, M.N. Partl, J.C. Carmeliet, D. Derome, Transp. Porous Media 105, 431 (2014)

    Article  Google Scholar 

  19. N. Toropovs, F.L. Monte, M. Wyrzykowski, B. Weber, G. Sahmenko, P. Vontobel, R. Felicetti, P. Lura, Cem. Concr. Res. 68, 166 (2015)

    Article  Google Scholar 

  20. A. Iranzo, P. Boillat, P. Oberholzer, J. Guerra, Energy 68, 971 (2014)

    Article  Google Scholar 

  21. A. Iranzo, P. Boillat, F. Rosa, Int. J. Hydrog. Energy 39, 7089 (2014)

    Article  Google Scholar 

  22. T. Kotaka, Y. Tabuchi, U. Pasaogullari, C.-Y. Wang, Electrochim. Acta 146, 618 (2014)

    Article  Google Scholar 

  23. C. Gervais, J.J. Boon, F. Marone, E.S.B. Ferreira, Appl. Phys. A Mater. 111, 31 (2013)

    Article  ADS  Google Scholar 

  24. SIK-ISEA, in Technologische Forschungen zur Malerei von Cuno Amiet (18831914), ed. by K. Beltinger (Scheidegger & Spiess, Zürich, 2015)

  25. S.L. Shamblin, B.C. Hancock, G. Zografi, Eur. J. Pharm. Biopharm. 45, 239 (1998)

    Article  Google Scholar 

  26. Y. Xie, C.A.S. Hill, Z. Jalaludin, S.F. Curling, R.D. Anandjiwala, A.J. Norton, G. Newman, J. Mater. Sci. 46, 479 (2011)

    Article  ADS  Google Scholar 

  27. D.V. Okhrimenko, K.N. Dalby, S.L.S. Stipp, Procedia Earth Planet. Sci. 7, 632 (2013)

    Article  Google Scholar 

  28. A.S. Tremsin, J.B. McPhate, J.V. Vallerga, O.H. Siegmund, W.B. Feller, E. Lehmann, A. Kaestner, P. Boillat, T. Panzner, U. Filges, Nucl. Instrum. Methods A 688, 32 (2012)

    Article  ADS  Google Scholar 

  29. S.H. Williams, A. Hilger, N. Kardjilov, I. Manke, M. Strobl, P.A. Douissard, T. Martin, H. Riesemeier, J. Banhart, J. Instrum. 7, 2014 (2012)

    Article  Google Scholar 

  30. P. Trtik, J. Hovind, C. Grünzweig, A. Bollhalder, V. Thominet, C. David, A. Kaestner, E.H. Lehmann, in Physics Procedia, Proceedings of the WCNR-10, Grindelwald, Switzerland (2014). doi:10.1016/j.phpro.2015.07.02

  31. M. Doerner, Malmaterial und seine Verwendung im Bilde, 18th edn. (Enke, Stuttgart, 1994)

    Google Scholar 

  32. S. Schäfer, in Coloured Glazes on Metal Leaf from the Baroque and Rococo, eds. E. Emmerling, M. Kühlenthal, M. Richter (Technische Universität München, München, 2013), pp. 709–713

  33. V.F. Sears, Neutron News 3, 26 (1992)

    Article  Google Scholar 

  34. R. Hassanein, H.O. Meyer, A. Carminati, M. Estermann, E. Lehmann, P. Vontobel, J. Phys. Appl. Phys. 39, 4284 (2006)

    Article  ADS  Google Scholar 

  35. R.K. Hassanein, Correction Methods for the Quantitative Evaluation of Thermal Neutron Tomography. PhD dissertation, ETH Zürich (2006)

  36. H. Derluyn, Salt Transport and Crystallization in Porous Limestone: NeutronX-ray Imaging and Poromechanical Modeling. PhD dissertation, ETH Zürich (2014)

  37. M. Kang, H.Z. Bilheux, S. Voisin, C.L. Cheng, E. Perfect, J. Horita, J.M. Warren, Nucl. Instrum. Methods A 708, 24 (2013)

    Article  ADS  Google Scholar 

  38. G.B. Eijkel, B. Kükrer Kaletaş, I.M. Van Der Wiel, J.M. Kros, T.M. Luider, R.M.A. Heeren, Surf. Interface Anal. 41, 675 (2009)

    Article  Google Scholar 

  39. J.R. Philip, Soil Sci. 84, 257 (1957)

    Article  Google Scholar 

  40. W.E. Morton, Physical Properties of Textile Fibres (Woodhead Publishing, Cambridge, 2008)

    Book  Google Scholar 

  41. S. Alix, E. Philippe, A. Bessadok, L. Lebrun, C. Morvan, S. Marais, Bioresour. Technol. 100, 4742 (2009)

    Article  Google Scholar 

  42. J. Nadah, F. Bignonnet, C.A. Davy, F. Skoczylas, D. Troadec, S. Bakowski, Int. J. Rock Mech. Min. Sci. 58, 149 (2013)

    Google Scholar 

  43. G. Hedley, in Measured Opinions: Collected Papers on the Conservation of Paintings, ed. C. Villers (United Kingdom Institute for Conservation, London, 1993), pp. 112–122

Download references


Technical staff at AMOLF (Amsterdam) both in the Mechanical and in the Electronic Engineering Department are thanked for the production of the prototype reaction chamber system. The development was financially supported by FOM program 49 made possible by support by FOM and NWO. We gratefully acknowledge the contributions and advice of Peter Vontobel, Karoline Beltinger, Kevin Mader, Leslie Carlyle, Eleanor Cato, Henk Huinink, Karin Wyss, Danièle Gros, Markus Küffner, Margaux Genton and Philipp Hitz. The Swiss National Science Foundation and Werner Abegg-Fonds are acknowledged for the financial support of this research.

Author contributions

Jaap J. Boon is responsible for the design of the perfusion chamber, the experimental results at ICON beamline and the qualitative data processing. Roel Hendrickx is responsible for the data normalisation and quantitative data processing.

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. S. B. Ferreira.

Additional information

J. J. Boon and R. Hendrickx are the co-first authors.

J. J. Boon and R. Hendrickx have contributed equally to the content of this paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boon, J.J., Hendrickx, R., Eijkel, G. et al. Neutron radiography for the study of water uptake in painting canvases and preparation layers. Appl. Phys. A 121, 837–847 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Water Uptake
  • Ground Layer
  • Moisture Uptake
  • Beam Hardening
  • Neutron Radiography