Skip to main content
Log in

Tuning the thermal conductivity of multi-layer graphene with interlayer bonding and tensile strain

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the thermal conductivity of interlayer-bonded bilayer graphene, trilayer graphene, and pyrolytic graphite using molecular dynamics simulations. We find that interlayer sp 3 bonding greatly reduces the thermal conductivity, with the reduction up to 80 %, depending on the distribution and coverage of sp 3 bonds. Besides, we find that tensile strain reduces the thermal conductivity of interlayer-bonded graphene further by up to 50 %. Our findings suggest the possibility of using interlayer sp 3 bonds and tensile strain to tune and manipulate the thermal conductivity of multi-layer graphene, which may be useful in thermal management of graphene-based nanodevices and in thermoelectric applications of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  4. C. Soldano, A. Mahmood, E. Dujardin, Carbon 48, 2127 (2010)

    Article  Google Scholar 

  5. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008)

    Article  ADS  Google Scholar 

  6. A.A. Balandin, Nat. Mater. 10, 569 (2011)

    Article  ADS  Google Scholar 

  7. J. Chen, G. Zhang, B. Li, Nanoscale 5, 532 (2013)

    Article  ADS  Google Scholar 

  8. M. Hu, D. Poulikakos, Int. J. Heat Mass Transf. 62, 205 (2013)

    Article  Google Scholar 

  9. J.W. Jiang, J.S. Wang, B. Li, Phys. Rev. B 79, 205418 (2009)

    Article  ADS  Google Scholar 

  10. B. Liu, C.D. Reddy, J. Jiang, J.A. Baimova, S.V. Dmitriev, A.A. Nazarov, K. Zhou, Appl. Phys. Lett. 101, 211909 (2012)

    Article  ADS  Google Scholar 

  11. T.Y. Ng, J.J. Yeo, Z.S. Liu, Carbon 50, 4887 (2012)

    Article  Google Scholar 

  12. P. Yang, X. Li, H. Yang, X. Wang, Y. Tang, X. Yuan, Appl. Phys. A 112, 759 (2013)

    Article  ADS  Google Scholar 

  13. C.H. Lui, Z. Li, K.F. Mak, E. Cappelluti, T.F. Heinz, Nat. Phys. 7, 944 (2011)

    Article  Google Scholar 

  14. Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009)

    Article  ADS  Google Scholar 

  15. P. Avouris, F. Xia, MRS Bull. 37, 1225 (2012)

    Article  Google Scholar 

  16. R. Ma, L. Sheng, M. Liu, D.N. Sheng, Phys. Rev. B 86, 115414 (2012)

    Article  ADS  Google Scholar 

  17. R. Ma, L. Zhu, L. Sheng, M. Liu, D.N. Sheng, Phys. Rev. B 84, 075420 (2011)

    Article  ADS  Google Scholar 

  18. C.R. Wang, W.S. Lu, L. Hao, W.L. Lee, T.K. Lee, F. Lin, I.C. Cheng, J.Z. Chen, Phys. Rev. Lett. 107, 186602 (2011)

    Article  ADS  Google Scholar 

  19. S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau, A.A. Balandin, Nat. Mater. 9, 555 (2010)

    Article  ADS  Google Scholar 

  20. Z. Wei, Z. Ni, K. Bi, M. Chen, Y. Chen, Carbon 49, 2653 (2011)

    Article  Google Scholar 

  21. J. Kanasaki, E. Inami, K. Tanimura, H. Ohnishi, K. Nasu, Phys. Rev. Lett. 102, 087402 (2009)

    Article  ADS  Google Scholar 

  22. M.K. Zalalutdinov, J.T. Robinson, C.E. Junkermeier, J.C. Culbertson, T.L. Reinecke, R. Stine, P.E. Sheehan, B.H. Houston, E.S. Snow, Nano Lett. 12, 4212 (2012)

    Article  ADS  Google Scholar 

  23. H.F. Zhan, Y.Y. Zhang, J.M. Bell, B.C. Zhang, Y.T. Gu, J. Phys. Chem. C 118, 732 (2014)

    Article  Google Scholar 

  24. A.R. Muniz, D. Maroudas, Phys. Rev. B 86, 075404 (2012)

    Article  ADS  Google Scholar 

  25. A. Rajabpour, S.M.V. Allaei, Appl. Phys. Lett. 101, 053115 (2012)

    Article  ADS  Google Scholar 

  26. M.H. Khadem, A.P. Wemhoff, Chem. Phys. Lett. 574, 78 (2013)

    Article  ADS  Google Scholar 

  27. A.H.R. Palser, Phys. Chem. Chem. Phys. 1, 4459 (1999)

    Article  Google Scholar 

  28. Y.Y. Zhang, C.M. Wang, Y. Cheng, Y. Xiang, Carbon 49, 4511 (2011)

    Article  Google Scholar 

  29. S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000)

    Article  ADS  Google Scholar 

  30. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  MATH  Google Scholar 

  31. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys. Condens. Matter 14, 783 (2002)

    Article  ADS  Google Scholar 

  32. Q.X. Pei, Y.W. Zhang, Z.D. Sha, V.B. Shenoy, Appl. Phys. Lett. 100, 101901 (2012)

    Article  ADS  Google Scholar 

  33. N. Wei, L. Xu, H.Q. Wang, J.C. Zheng, Nanotechnology 22, 105705 (2011)

    Article  ADS  Google Scholar 

  34. Z. Xu, M.J. Buehler, Nanotechnology 20, 185701 (2009)

    Article  ADS  Google Scholar 

  35. X. Xu, L.F.C. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C.T. Bui, R. Xie, J.T.L. Thong, B.H. Hong, K.P. Loh, D. Donadio, B. Li, B. Oezyilmaz, Nat. Commun. 5, 3689 (2014)

    ADS  Google Scholar 

  36. L. Lindsay, D.A. Broido, Phys. Rev. B 81, 205441 (2010)

    Article  ADS  Google Scholar 

  37. Q.X. Pei, Z.D. Sha, Y.W. Zhang, Carbon 49, 4752 (2011)

    Article  Google Scholar 

  38. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Appl. Phys. Rev. 1, 011305 (2014)

    Article  ADS  Google Scholar 

  39. S.K. Chien, Y.T. Yang, C.O.K. Chen, Appl. Phys. Lett. 98, 033107 (2011)

    Article  ADS  Google Scholar 

  40. F. Hao, D. Fang, Z. Xu, Appl. Phys. Lett. 99, 041901 (2011)

    Article  ADS  Google Scholar 

  41. P.G. Klemens, Int. J. Thermophys. 22, 265 (2001)

    Article  Google Scholar 

  42. B. Mortazavi, S. Ahzi, Solid State Commun. 152, 1503 (2012)

    Article  ADS  Google Scholar 

  43. B. Mortazavi, S. Ahzi, Carbon 63, 460 (2013)

    Article  Google Scholar 

  44. Z.X. Guo, D. Zhang, X.G. Gong, Appl. Phys. Lett. 95, 163103 (2009)

    Article  ADS  Google Scholar 

  45. W. Huang, Q.X. Pei, Z.S. Liu, Y.W. Zhang, Chem. Phys. Lett. 552, 97 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Agency for Science, Technology and Research (A*STAR), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Xiang Pei or Yong-Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Sha, ZD., Liu, X. et al. Tuning the thermal conductivity of multi-layer graphene with interlayer bonding and tensile strain. Appl. Phys. A 120, 1275–1281 (2015). https://doi.org/10.1007/s00339-015-9373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9373-z

Keywords

Navigation