Skip to main content
Log in

The effect of Ti and O ion implantation on the resistive switching in Pt/TiO2−x /Pt devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of Ti and O implantation on TiO2−x resistive switches are systemically investigated. The forming voltage drops monotonically with Ti implantation dose and forming vanishes completely at 1016 ions/cm2, whereas oxygen implantation causes a decrease and then increase in forming voltage. The ON/OFF current ratio becomes worse with high Ti implantation due to increased leakage currents through the TiO2 film. Furthermore, the forming voltage minimum induced by oxygen implantation can be shifted by thermal annealing, suggesting a careful balance between oxidation, reduction, and ion implantation damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.B. Strukov, H. Kohlstedt, MRS Bull. 37, 108–117 (2012)

    Article  Google Scholar 

  2. J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. 8, 13–24 (2013)

    Article  ADS  Google Scholar 

  3. L. Gao, S.B. Lee, B. Hoskins, H.K. Yoo, B.S. Kang, Appl. Phys. Lett. 103, 043503 (2013)

    Article  ADS  Google Scholar 

  4. L. Gao, F. Alibart, D.B. Strukov, IEEE Trans. Nanotechnol. 12, 115–119 (2013)

    Article  ADS  Google Scholar 

  5. F. Alibart, L. Gao, B.D. Hoskins, D.B. Strukov, Nanotechnology 23, 075201 (2012)

    Article  ADS  Google Scholar 

  6. L. Gao, F. Merrikh-Bayat, F. Alibart, X. Guo, B.D. Hoskins, K.T. Cheng, D.B. Strukov, in IEEE/ACM International Symposium on Nanoscale Architectures, pp. 19–22 (2013)

  7. J.J. Yang, I.H. Inoue, T. Mikolajick, C.S. Hwang, MRS Bull. 37, 131–137 (2012)

    Article  Google Scholar 

  8. Q.F. Xia, W. Robinett, M.W. Cumbie, N. Banerjee, T.J. Cardinali, J.J. Yang, W. Wu, X.M. Li, W.M. Tong, D.B. Strukov, G.S. Snider, G. Medeiros-Ribeiro, R.S. Williams, Nano Lett. 9, 3640–3645 (2009)

    Article  ADS  Google Scholar 

  9. R. Waser, Nanoelectronics and Information Technology, 3rd edn. (Wiley-WCH, New York, 2012)

    Google Scholar 

  10. H.J. Barnaby, S. Malley, M. Land, S. Charnicki, A. Kathuria, B. Wilkens, E. DeIonno, W.M. Tong, IEEE Trans. Nucl. Sci. 58, 2838–2844 (2011)

    Article  ADS  Google Scholar 

  11. S.M. Bishop, H. Bakhru, J.O. Capulong, N.C. Cady, Appl. Phys. Lett. 100, 142111 (2012)

    Article  ADS  Google Scholar 

  12. S. Mondal, H.Y. Chen, J.L. Her, F.H. Ko, T.M. Pan, Appl. Phys. Lett. 101, 083506 (2012)

    Article  ADS  Google Scholar 

  13. S.H. Liu, W.L. Yang, Y.H. Lin, C.C. Wu, T.S. Chao, IEEE Electron Device Lett. 34, 1388–1390 (2013)

    Article  ADS  Google Scholar 

  14. Q. Liu, S.B. Long, W. Wang, Q.Y. Zuo, S. Zhang, J.N. Chen, M. Liu, IEEE Electron Device Lett. 30, 1335–1337 (2009)

    Article  ADS  Google Scholar 

  15. Y.Y. Chen, R. Roelofs, A. Redolfi, R. Degraeve, D. Crotti, A. Fantini, S. Clima, B. Govoreanu, M. Komura, L. Goux, L. Zhang, A. Belmonte, Q. Xie, J. Maes, G. Pourtois, M. Jurczak, in IEEE Symposium on VLSI Technology, pp. 1–2 (2014)

  16. L. Zhao, S.W. Ryu, A. Hazeghi, D. Duncan, B. Magyari-Kope, Y. Nishi, in IEEE Symposium on VLSI Technology, pp. T106–T107 (2013)

  17. B. Gao, H.W. Zhang, S. Yu, B. Sun, L.F. Liu, X.Y. Liu, Y. Wang, R.Q. Han, J.F. Kang, B. Yu, Y.Y. Wang, in IEEE Symposium on VLSI Technology, pp. 30–31 (2009)

  18. S.W. Ryu, S. Cho, J. Park, J. Kwac, H.J. Kim, Y. Nishi, Appl. Phys. Lett. 105, 072102 (2014)

    Article  ADS  Google Scholar 

  19. H.W. Zhang, L.F. Liu, B. Gao, Y.J. Qiu, X.Y. Liu, J. Lu, R.Q. Han, J.F. Kang, B. Yu, Appl. Phys. Lett. 98, 042105 (2011)

    Article  ADS  Google Scholar 

  20. J.J. Yang, J.P. Strachan, Q.F. Xia, D.A.A. Ohlberg, P.J. Kuekes, R.D. Kelley, W.F. Stickle, D.R. Stewart, G. Medeiros-Ribeiro, R.S. Williams, Adv. Mater. 22, 4034–4038 (2010)

    Article  Google Scholar 

  21. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, Nanotechnology 20, 215201 (2009)

    Article  ADS  Google Scholar 

  22. Z. Fang, H.Y. Yu, X. Li, N. Singh, G.Q. Lo, D.L. Kwong, IEEE Electron Device Lett. 32, 566–568 (2011)

    Article  ADS  Google Scholar 

  23. S. Lee, D. Lee, J. Woo, E. Cha, J. Park, J. Song, K. Moon, Y. Koo, B. Attari, N. Tamanna, M.S. Haque, H. Hwang, IEEE Electron Device Lett. 34, 1515–1517 (2013)

    Article  ADS  Google Scholar 

  24. A.J. Lohn, J.E. Stevens, P.R. Mickel, M.J. Marinella, Appl. Phys. Lett. 103, 063502 (2013)

    Article  ADS  Google Scholar 

  25. S.U. Sharath, T. Bertaud, J. Kurian, E. Hildebrandt, C. Walczyk, P. Calka, P. Zaumseil, M. Sowinska, D. Walczyk, A. Gloskovskii, T. Schroeder, L. Alff, Appl. Phys. Lett. 104, 063502 (2014)

    Article  ADS  Google Scholar 

  26. B. Chakrabarti, E.M. Vogel, Microelectron. Eng. 109, 193–196 (2013)

    Article  Google Scholar 

  27. H.W. Zhang, B. Gao, B. Sun, G.P. Chen, L. Zeng, L.F. Liu, X.Y. Liu, J. Lu, R.Q. Han, J.F. Kang, B. Yu, Appl. Phys. Lett. 96, 123502 (2010)

    Article  ADS  Google Scholar 

  28. J. Yoon, H. Choi, D. Lee, J.B. Park, J. Lee, D.J. Seong, Y. Ju, M. Chang, S. Jung, H. Hwang, IEEE Electron Device Lett. 30, 457–459 (2009)

    Article  Google Scholar 

  29. M.S. Lee, S. Choi, C.-H. An, H. Kim, Appl. Phys. Lett. 100, 143504 (2012)

    Article  ADS  Google Scholar 

  30. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429–433 (2008)

    Article  Google Scholar 

  31. N.G. Stoffel, D.L. Hart, Mater. Res. Soc. Symp. Proc. 93, 15–20 (1987)

    Article  Google Scholar 

  32. I. Khubeis, R. Fromknecht, S. Massing, O. Meyer, Nucl. Instrum. Methods B 141, 332–337 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Air Force Office of Scientific Research (AFOSR) under the MURI grant FA9550-12-1-0038 and STTR grant FA8750-12-C-0157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Hoskins, B., Zaynetdinov, M. et al. The effect of Ti and O ion implantation on the resistive switching in Pt/TiO2−x /Pt devices. Appl. Phys. A 120, 1599–1603 (2015). https://doi.org/10.1007/s00339-015-9368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9368-9

Keywords

Navigation