Applied Physics A

, Volume 121, Issue 3, pp 869–878 | Cite as

Microkinetic modeling of the autoxidative curing of an alkyd and oil-based paint model system

  • Lindsay H. Oakley
  • Francesca Casadio
  • Kenneth R. Shull
  • Linda J. BroadbeltEmail author
Invited Paper


Elucidating the curing and aging mechanisms of alkyd and other oil-based paints is valuable for the fields of conservation and bio-based coatings. Recent research has demonstrated the limitations of artificial aging in predicting the actual properties of paints that are hundreds of years old. Kinetic modeling offers pathways to develop a realistic and dynamic description of the composition of these oil-based paint coatings and facilitates the exploration of the effects of various environmental conditions on their long-term chemical stability. This work presents the construction of a kinetic Monte Carlo framework from elementary steps for the cobalt-catalyzed autoxidative curing of an ethyl linoleate model system up to the formation of single cross-links. Kinetic correlations for reaction families of similar chemistry are employed to reduce the number of parameters required to calculate rate constants in Arrhenius form. The model, developed from mechanisms proposed in the literature, shows good agreement with experiment for the formation of primary products in the early stages of curing. The model has also revealed that the mechanisms proposed in the literature for the formation of secondary products, such as volatile aldehydes, are still not well established, and alternative routes are under evaluation.


Peroxy Radical Kinetic Monte Carlo Ethyl Linoleate Volatile Aldehyde Scission Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the National Science Foundation (DMR-1241667) is gratefully acknowledged.


  1. 1.
    C.L. Eastlake, Materials for a History of Oil Painting, vol. 1, 1st edn. (Longman, Brown, Green, and Longmans, London, 1847)Google Scholar
  2. 2.
    M.F. Mecklenburg, C.S. Tumosa, Traditional oil paints: the effects of long-term chemical and mechanical properties on restoration efforts. MRS Bull. 26(1), 51–54 (2001)CrossRefGoogle Scholar
  3. 3.
    R. Ploeger, D. Scalarone, O. Chiantore, Thermal analytical study of the oxidative stability of artists’ alkyd paints. Polym. Degrad. Stab. 94(11), 2036–2041 (2009)CrossRefGoogle Scholar
  4. 4.
    R. Vinu, L.J. Broadbelt, Unraveling reaction pathways and specifying reaction kinetics for complex systems. Annu. Rev. Chem. Biomol. Eng. 3, 29–54 (2012)CrossRefGoogle Scholar
  5. 5.
    D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    L. Wang, L.J. Broadbelt, Explicit sequence of styrene/methyl methacrylate gradient copolymers synthesized by forced gradient copolymerization with nitroxide-mediated controlled radical polymerization. Macromolecules 42(20), 7961–7968 (2009)CrossRefADSGoogle Scholar
  7. 7.
    L. Wang, L.J. Broadbelt, Tracking explicit chain sequence in kinetic Monte Carlo simulations. Macromol. Theory Simul. 20(1), 54–64 (2011)CrossRefGoogle Scholar
  8. 8.
    L. Wang, L.J. Broadbelt, Model-based design for preparing styrene/methyl methacrylate structural gradient copolymers. Macromol. Theory Simul. 20(3), 191–204 (2011)CrossRefGoogle Scholar
  9. 9.
    R. Vinu, S.E. Levine, L. Wang, L.J. Broadbelt, Detailed mechanistic modeling of poly (styrene peroxide) pyrolysis using kinetic Monte Carlo simulation. Chem. Eng. Sci. 69(1), 456–471 (2012)CrossRefGoogle Scholar
  10. 10.
    J.H. Hartshorn, in Applications of FTIR to Paint Analysis. Analysis of Paints and Related Materials: Current Techniques for Solving Coatings Problems (American Society for Testing and Materials, Philadelphia, 1992), pp. 127–147Google Scholar
  11. 11.
    S.T. Warzeska, M. Zonneveld, R. van Gorkum, W.J. Muizebelt, E. Bouwman, J. Reedijk, The influence of bipyridine on the drying of alkyd paints: a model study. Prog. Org. Coat. 44(3), 243–248 (2002)CrossRefGoogle Scholar
  12. 12.
    M. Lazzari, O. Chiantore, Drying and oxidative degradation of linseed oil. Polym. Degrad. Stab. 65(2), 303–313 (1999)CrossRefGoogle Scholar
  13. 13.
    J. Mallégol, J. Lemaire, J.L. Gardette, Drier influence on the curing of linseed oil. Prog. Org. Coat. 39(2), 107–113 (2000)CrossRefGoogle Scholar
  14. 14.
    Z. Liu, H. Kooijman, A.L. Spek, E. Bouwman, New manganese-based catalyst systems for alkyd paint drying. Prog. Org. Coat. 60(4), 343–349 (2007)CrossRefGoogle Scholar
  15. 15.
    Z.O. Oyman, W. Ming, R. van der Linde, Oxidation of drying oils containing non-conjugated and conjugated double bonds catalyzed by a cobalt catalyst. Prog. Org. Coat. 54(3), 198–204 (2005)CrossRefGoogle Scholar
  16. 16.
    Z.O. Oyman, W. Ming, R. van der Linde, R. van Gorkum, E. Bouwman, Effect of [Mn(acac)3] and its combination with 2,2-bipyridine on the autoxidation and oligomerisation of ethyl linoleate. Polymer 46(6), 1731–1738 (2005)CrossRefGoogle Scholar
  17. 17.
    G. Ellis, M. Claybourn, S.E. Richards, The application of Fourier transform Raman spectroscopy to the study of paint systems. Spectrochim. Acta Part Mol. Spectrosc. 46(2), 227–241 (1990)CrossRefADSGoogle Scholar
  18. 18.
    W.J. Muizebelt, J.C. Hubert, R.A.M. Venderbosch, Mechanistic study of drying of alkyd resins using ethyl linoleate as a model substance. Prog. Org. Coat. 24, 263–279 (1994)CrossRefGoogle Scholar
  19. 19.
    W.J. Muizebelt, J.J. Donkerbroek, M.W.F. Nielen, J.B. Hussem, M.E.F. Biemond, R.P. Klaasen, K.H. Zabel, Oxidative crosslinking of alkyd resins studied with mass spectrometry and NMR using model compounds. J. Coat. Technol. 70(876), 83–93 (1998)CrossRefGoogle Scholar
  20. 20.
    Z.O. Oyman, W. Ming, R. van der Linde, Oxidation of 13C-labeled ethyl linoleate monitored and quantitatively analyzed by 13C NMR. Eur. Polym. J. 42(6), 1342–1348 (2006)CrossRefGoogle Scholar
  21. 21.
    W.J. Muizebelt, M.W.F. Nielen, Oxidative crosslinking of unsaturated fatty acids studied with mass spectrometry. J. Mass Spectrom. 31, 545–554 (1996)CrossRefGoogle Scholar
  22. 22.
    E. Bouwman, R. Gorkum, A study of new manganese complexes as potential driers for alkyd paints. J. Coat. Technol. Res. 4(4), 491–503 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Mallégol, L. Gonon, S. Commereuc, V. Verney, Thermal (DSC) and chemical (iodometric titration) methods for peroxides measurements in order to monitor drying extent of alkyd resins. Prog. Org. Coat. 41(1), 171–176 (2001)CrossRefGoogle Scholar
  24. 24.
    J.D. van den Berg, K. van den Berg, J. Boon, Determination of the degree of hydrolysis of oil paint samples using a two-step derivatisation method and on-column GC/MS. Prog. Org. Coat. 41(1–3), 143–155 (2001)CrossRefGoogle Scholar
  25. 25.
    P.D. Iedema, J.J. Hermans, K. Keune, A. van Loon, and M.J.N. Stols-Witlox. 2014. Mathematical modeling of mature oil paint networks. In ICOM-CC 17th Triennial Conference Preprints, Melbourne, 15–19 September 2014, ed. J. Bridgland, art. 1604, 8 pp. Paris: International Council of Museums. (ISBN 978-92-9012-410-8)Google Scholar
  26. 26.
    F. Garcia-Ochoa, J. Querol, A. Romero, Modeling of the liquid-phase n-octane oxidation catalyzed by cobalt. Ind. Eng. Chem. Res. 29(10), 1989–1994 (1990)CrossRefGoogle Scholar
  27. 27.
    L.J. Broadbelt, J. Pfaendtner, Lexicography of kinetic modeling of complex reaction networks. AIChE J. 51(8), 2112–2121 (2005)CrossRefGoogle Scholar
  28. 28.
    E.T. Denisov, I.B. Afanas’ev, Oxidation and Antioxidants in Organic Chemistry and Biology (CRC Press, Boca Raton, 2005)CrossRefGoogle Scholar
  29. 29.
    H.W. Gardner, Oxygen radical chemistry of polyunsaturated fatty acids. Free Radic. Biol. Med. 7(1), 65–86 (1989)CrossRefGoogle Scholar
  30. 30.
    E.N. Frankel, Lipid Oxidation (Woodhead Publishing, Cambridge, 2012)Google Scholar
  31. 31.
    R. van Gorkum, E. Bouwman, The oxidative drying of alkyd paint catalysed by metal complexes. Coord. Chem. Rev. 249(17–18), 1709–1728 (2005)Google Scholar
  32. 32.
    M.D. Soucek, T. Khattab, J. Wu, Review of autoxidation and driers. Prog. Org. Coat. 73(4), 435–454 (2012)CrossRefGoogle Scholar
  33. 33.
    E. Spier, U. Neuenschwander, I. Hermans, Insights into the cobalt(II)-catalyzed decomposition of peroxide. Angew. Chem. Int. Ed. 52(5), 1581–1585 (2013)CrossRefGoogle Scholar
  34. 34.
    E. Spier, I. Hermans, Enhancing the deperoxidation activity of cobalt(II) acetylacetonate by the addition of octanoic acid. ChemPhysChem 14(14), 3384–3388 (2013)CrossRefGoogle Scholar
  35. 35.
    E.N. Frankel, Volatile lipid oxidation products. Prog. Lipid Res. 22(1), 1–33 (1983)CrossRefGoogle Scholar
  36. 36.
    R.A. Hancock, N.J. Leeves, P.F. Nicks, Studies in autoxidation: Part I. The volatile by-products resulting from the autoxidation of unsaturated fatty acid methyl esters. Prog. Org. Coat. 17(3), 321–336 (1989)CrossRefGoogle Scholar
  37. 37.
    J. Pfaendtner, L.J. Broadbelt, Mechanistic modeling of lubricant degradation. 2. The autoxidation of decane and octane. Ind. Eng. Chem. Res. 47(9), 2897–2904 (2008)CrossRefGoogle Scholar
  38. 38.
    M.G. Evans, M. Polanyi, Inertia and driving force of chemical reactions. Trans. Faraday Soc. 34, 11–24 (1938)CrossRefGoogle Scholar
  39. 39.
    S.W. Benson, Thermochemical kinetics: methods for the estimation of thermochemical data and rate parameters, 2nd edn. (Wiley, New York, 1976)Google Scholar
  40. 40.
    J. Pfaendtner, L.J. Broadbelt, Mechanistic modeling of lubricant degradation. 1. Structure-reactivity relationships for free-radical oxidation. Ind. Eng. Chem. Res. 47(9), 2886–2896 (2008)CrossRefGoogle Scholar
  41. 41.
    S.E. Stein, J.M. Rukkers, and R.L. Brown, NIST Standard Reference Database 25: NIST Structures and Properties Database and Estimation Program. Gaithersberg, MD, 1991Google Scholar
  42. 42.
    R. Sumathi, W.H. Green Jr, A priori rate constants for kinetic modeling. Theor. Chim. Acta 108(4), 187–213 (2002)CrossRefGoogle Scholar
  43. 43.
    D.J. Henry, L. Radom, Quantum-Mechanical Prediction of Thermochemical Data, in Theoretical Thermochemistry of Radicals, ed. by J. Cioslowski (Springer, New York, 2001), pp. 161–197Google Scholar
  44. 44.
    A.S. Menon, G.P.F. Wood, D. Moran, L. Radom, Bond dissociation energies and radical stabilization energies: an assessment of contemporary theoretical procedures. J. Phys. Chem. A 111(51), 13638–13644 (2007)CrossRefGoogle Scholar
  45. 45.
    M.L. Coote, Reliable theoretical procedures for the calculation of electronic-structure information in hydrogen abstraction reactions. J. Phys. Chem. A 108(17), 3865–3872 (2004)CrossRefGoogle Scholar
  46. 46.
    C.Y. Lin, J.L. Hodgson, M. Namazian, M.L. Coote, Comparison of G3 and G4 theories for radical addition and abstraction reactions. J. Phys. Chem. A 113(15), 3690–3697 (2009)CrossRefGoogle Scholar
  47. 47.
    X. Zheng, P. Blowers, The application of composite energy methods to n-butyl radical β-scission reaction kinetic estimations. Theor. Chem. Acc. 117(2), 207–212 (2007)CrossRefGoogle Scholar
  48. 48.
    F. Wang, D.B. Cao, G. Liu, J. Ren, Y.W. Li, Theoretical study of the competitive decomposition and isomerization of 1-hexyl radical. Theor. Chem. Acc. 126(1–2), 87–98 (2010)CrossRefGoogle Scholar
  49. 49.
    D.B. Min, J.M. Boff, Chemistry and reaction of singlet oxygen in foods. Compr. Rev. Food Sci. Food Saf. 1(2), 58–72 (2002)CrossRefGoogle Scholar
  50. 50.
    E.N. Frankel, Chemistry of free radical and singlet oxidation of lipids. Prog. Lipid Res. 23, 197–221 (1985)CrossRefGoogle Scholar
  51. 51.
    E.N. Frankel, W.E. Neff, W.K. Rohwedder, B.P.S. Khambay, R.F. Garwood, B.C.L. Weedon, Analysis of autoxidized fats by gas chromatography-mass spectrometry: II. Methyl linoleate. Lipids 12(11), 908–913 (1977)CrossRefGoogle Scholar
  52. 52.
    E.T. Denisov, Liquid-Phase Reaction Rate Constants (Plenum Press, New York, 1974)Google Scholar
  53. 53.
    N.M. Emanuel, E.T. Denisov, Z.K. Maizus, Liquid-Phase Oxidation of Hyrdocarbons (Plenum Press, New York, 1967)Google Scholar
  54. 54.
    U. Neuenschwander, I. Hermans, Thermal and catalytic formation of radicals during autoxidation. J. Catal. 287, 1–4 (2012)CrossRefGoogle Scholar
  55. 55.
    S.M.D. Naqvi, F. Khan, Selective homogeneous oxidation system for producing hydroperoxides concentrate: kinetics of catalytic oxidation of gas oils. Ind. Eng. Chem. Res. 48(12), 5642–5655 (2009)CrossRefGoogle Scholar
  56. 56.
    E.T. Denisov, T.G. Denisova, T.S. Pokidova, Handbook of Free Radical Initiators (Wiley, New Jersey, 2003)CrossRefGoogle Scholar
  57. 57.
    D.T. Gillespie, Concerning the validity of the stochastic approach to chemical kinetics. J. Stat. Phys. 16, 311–318 (1977)MathSciNetCrossRefADSGoogle Scholar
  58. 58.
    D.T. Gillespie, Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58(1), 35–55 (2007)CrossRefADSGoogle Scholar
  59. 59.
    F.D. Gunstone, F.B. Padley (eds.), Lipid Technologies and Applications (Marcel Dekker, New York, 1997)Google Scholar
  60. 60.
    E. Choe, D.B. Min, Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 5(4), 169–186 (2006)CrossRefGoogle Scholar
  61. 61.
    C.D. Evans, G.R. List, A. Dolev, D.G. McConnell, R.L. Hoffmann, Pentane from thermal decomposition of lipoxidase-derived products. Lipids 2(5), 432–434 (1967)CrossRefGoogle Scholar
  62. 62.
    H.H. Jeleń, M. Obuchowska, R. Zawirska-Wojtasiak, E. Wąsowicz, Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality. J. Agric. Food Chem. 48(6), 2360–2367 (2000)CrossRefGoogle Scholar
  63. 63.
    A. Jalan, I.M. Alecu, R. Meana-Pañeda, J. Aguilera-Iparraguirre, K.R. Yang, S.S. Merchant, D.G. Truhlar, W.H. Green, New pathways for formation of acids and carbonyl products in low-temperature oxidation: the Korcek decomposition of γ-ketohydroperoxides. J. Am. Chem. Soc. 135(30), 11100–11114 (2013)CrossRefGoogle Scholar
  64. 64.
    S. Wang, in Hock Rearrangement (Hock Cleavage). Comprehensive Organic Name Reactions and Reagents, vol. 2 (Wiley, Hoboken, NJ), pp. 1438–1441Google Scholar
  65. 65.
    B.Z. Dlugogorski, E.M. Kennedy, J.C. Mackie, Mechanism of formation of volatile organic compounds from oxidation of linseed oil. Ind. Eng. Chem. Res. 51(16), 5653–5661 (2012)CrossRefGoogle Scholar
  66. 66.
    M. Morita, M. Tokita, Hydroxy radical, hexanal, and decadienal generation by autocatalysts in autoxidation of linoleate alone and with eleostearate. Lipids 43(7), 589–597 (2008)CrossRefGoogle Scholar
  67. 67.
    H.W. Gardner, R.D. Plattner, Linoleate hydroperoxides are cleaved heterolytically into aldehydes by a Lewis acid in aprotic solvent. Lipids 19(4), 294–299 (1984)CrossRefGoogle Scholar
  68. 68.
    C. Schneider, W.E. Boeglin, H. Yin, D.F. Stec, D.L. Hachey, N.A. Porter, A.R. Brash, Synthesis of dihydroperoxides of linoleic and linolenic acids and studies on their transformation to 4-hydroperoxynonenal. Lipids 40(11), 1155–1162 (2005)CrossRefGoogle Scholar
  69. 69.
    A.A. Frimer, The reaction of singlet oxygen with olefins: the question of mechanism. Chem. Rev. 79(5), 359–387 (1979)CrossRefGoogle Scholar
  70. 70.
    C.M. Spickett, The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biol. 1(1), 145–152 (2013)CrossRefGoogle Scholar
  71. 71.
    M. Morita, M. Tokita, The real radical generator other than main-product hydroperoxide in lipid autoxidation. Lipids 41(1), 91–95 (2006)CrossRefGoogle Scholar
  72. 72.
    L.J. Broadbelt, S.M. Stark, M.T. Klein, Computer generated pyrolysis modeling: on-the-fly generation of species, reactions, and rates. Ind. Eng. Chem. Res. 33(4), 790–799 (1994)CrossRefGoogle Scholar
  73. 73.
    R.G. Susnow, A.M. Dean, W.H. Green, P. Peczak, L.J. Broadbelt, Rate-based construction of kinetic models for complex systems. J. Phys. Chem. A 101(20), 3731–3740 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lindsay H. Oakley
    • 1
  • Francesca Casadio
    • 2
  • Kenneth R. Shull
    • 1
  • Linda J. Broadbelt
    • 3
    Email author
  1. 1.Department of Materials Science & EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of ConservationArt Institute of ChicagoChicagoUSA
  3. 3.Department of Chemical & Biological EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations