Skip to main content
Log in

Facile synthesis of decorated graphene oxide sheets with WO3 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Potential applications of graphene oxide (GO) nanocomposites have attracted remarkable attention to modify its properties by functionalizing and decorating with nanoparticles. In this work, after synthesis of GO sheets by oxidation and exfoliation of natural graphite, they were decorated with tungsten oxide nanoparticles using arc discharge in GO solution. Transmission electron microscopy shows that the chain of WO3 nanoparticles decorates the GO sheets. Fourier transform infrared spectroscopy and Raman spectroscopy show that WO3 nanoparticles are attached to GO sheets by bond formation between the tungsten and oxygen of functional groups, especially with epoxides on the GO sheets. Nanocomposite production in different arc currents shows that the greater the electrical current, the stronger the bond is formed between WO3 and GO. X-ray diffraction confirms that the WO3 nanoparticles on the GO are highly crystalline in monoclinic phase. Moreover, by increasing the arc current from 20 to 40 A, the band gap energy of GO + WO3 decreases to ~2.6 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Wang, S. Li, Y. Si, Z. Sun, S. Li, Y. Lin, J. Mater. Chem. B 2, 4442–4448 (2014)

    Article  Google Scholar 

  2. R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Science 343, 752–754 (2014)

    Article  ADS  Google Scholar 

  3. S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhänen, ACS Nano 7, 11166–11173 (2013)

    Article  Google Scholar 

  4. J.W. Suk, R.D. Piner, J. An, R.S. Ruoff, ACS Nano 4, 6557–6564 (2010)

    Article  Google Scholar 

  5. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Nature 442, 282–286 (2006)

    Article  ADS  Google Scholar 

  6. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  7. K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192–200 (2012)

    Article  ADS  Google Scholar 

  8. C. Soldano, A. Mahmood, E. Dujardin, Carbon 48, 2127–2150 (2010)

    Article  Google Scholar 

  9. W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, ACS Nano 4, 4317–4323 (2010)

    Article  Google Scholar 

  10. L.L. Zhang, S. Zhao, X.N. Tian, X.S. Zhao, Langmuir 26, 17624–17628 (2010)

    Article  Google Scholar 

  11. K. Han, J. Shen, C.M. Hayner, H. Ye, M.C. Kung, H.H. Kung, J. Power Sources 251, 331–337 (2014)

    Article  Google Scholar 

  12. J.-M. Thomassin, M. Trifkovic, W. Alkarmo, C. Detrembleur, C. Jerome, C. Macosko, Macromolecules 47, 2149–2155 (2014)

    Article  ADS  Google Scholar 

  13. S. Dong, J. Sun, Y. Li, C. Yu, Y. Li, J. Sun, Appl. Catal. B 144, 386–393 (2014)

    Article  Google Scholar 

  14. C. Chen, K. Xu, X. Ji, L. Miao, J. Jiang, Phys. Chem. Chem. Phys. 16, 11031–11036 (2014)

    Article  Google Scholar 

  15. M. Sterlin Leo Hudson, H. Raghubanshi, S. Awasthi, T. Sadhasivam, A. Bhatnager, S. Simizu, S.G. Sankar, O.N. Srivastava, Int. J. Hydrog. Energy 39, 8311–8320 (2014)

    Article  Google Scholar 

  16. B. Munkhbayar, M.J. Nine, J. Jeoun, M. Ji, H. Jeong, H. Chung, J. Power Sources 230, 207–217 (2013)

    Article  Google Scholar 

  17. J. Qin, M. Cao, N. Li, C. Hu, J. Mater. Chem. 21, 17167–17174 (2011)

    Article  Google Scholar 

  18. J. Guo, Y. Li, S. Zhu, Z. Chen, Q. Liu, D. Zhang, W.-J. Moon, D.-M. Song, RSC Adv. 2, 1356–1363 (2012)

    Article  Google Scholar 

  19. M. Choobtashani, O. Akhavan, Appl. Surf. Sci. 276, 628–634 (2013)

    Article  ADS  Google Scholar 

  20. X. Chang, S. Sun, L. Dong, X. Hu, Y. Yin, Electrochim. Acta 129, 40–46 (2014)

    Article  Google Scholar 

  21. A. Hjelm, C.G. Granqvist, J.M. Wills, Phys. Rev. B 54, 2436 (1996)

    Article  ADS  Google Scholar 

  22. T. He, Y. Ma, Y. Cao, X. Hu, H. Liu, G. Zhang, W. Yang, J. Yao, J. Phys. Chem. B 106, 12670–12676 (2002)

    Article  Google Scholar 

  23. M.U. Qadri, A.F.D. Diaz, M. Cittadini, A. Martucci, M.C. Pujol, J. Ferre-Borrull, E. Llobet, M. Aguilo, F. Diaz, Sensors 14, 11427–11443 (2014)

    Article  Google Scholar 

  24. Y. Gui, J. Yuan, W. Wang, J. Zhao, J. Tian, B. Xie, Materials 7, 4587–4600 (2014)

    Article  ADS  Google Scholar 

  25. M. Choobtashani, O. Akhavan, Appl. Surf. Sci. 276, 628–634 (2013)

    Article  ADS  Google Scholar 

  26. B. Munkhbayar, M.J. Nine, J. Jeoun, M. Ji, H. Jeong, H. Chung, J. Power Sources 230, 207–217 (2013)

    Article  Google Scholar 

  27. X. Chang, L. Dong, Y. Yin, S. Sun, RSC Adv. 3, 15005–15013 (2013)

    Article  Google Scholar 

  28. S. Srivastava, K. Jain, V.N. Singh, S. Singh, N. Vijayan, N. Dilawar, G. Gupta, T.D. Senguttuvan, Nanotechnology 23, 205501 (2012)

    Article  ADS  Google Scholar 

  29. T. Yang, L.-H. Liu, J.-W. Liu, M.-L. Chen, J.-H. Wang, J. Mater. Chem. 22, 21909–21916 (2012)

    Article  Google Scholar 

  30. D.A. Skoog, D.M. West, Principles of instrumental analysis (Saunders College Philadelphia, New York, 1980)

    Google Scholar 

  31. V. Gupta, T.A. Saleh, Syntheses of carbon nanotube-metal oxides composites; adsorption and photo-degradation (InTech, Croatia, 2011)

    Book  Google Scholar 

  32. A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    Article  ADS  Google Scholar 

  33. O. Akhavan, Carbon 48, 509–519 (2010)

    Article  Google Scholar 

  34. D. Zhan, Z. Ni, W. Chen, L. Sun, Z. Luo, L. Lai, T. Yu, A.T.S. Wee, Z. Shen, Carbon 49, 1362–1366 (2011)

    Article  Google Scholar 

  35. P. Klar, E. Lidorikis, A. Eckmann, I.A. Verzhbitskiy, A.C. Ferrari, C. Casiraghi, Phys. Rev. B 87, 205435 (2013)

    Article  ADS  Google Scholar 

  36. J.C. Sanchez-Lopez, A. Erdemir, C. Donnet, T.C. Rojas, Surf. Coat. Technol. 163, 444–450 (2003)

    Article  Google Scholar 

  37. J.-H. Ha, P. Muralidharan, D.K. Kim, J. Alloy. Compd. 475, 446–451 (2009)

    Article  Google Scholar 

  38. E.I. Ross-Medgaarden, I.E. Wachs, J. Phys. Chem. C 111, 15089–15099 (2007)

    Article  Google Scholar 

  39. A.A. Ashkarran, M.M. Ahadian, S.A.M. Ardakani, Nanotechnology 19, 195709 (2008)

    Article  ADS  Google Scholar 

  40. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys, Chem. C 112, 8192–8195 (2008)

    Google Scholar 

  41. D.L. Andrews, Photonics, Volume 2: Nanophotonic Structures and Materials (Wiley, New York, 2015)

    Google Scholar 

  42. S. Tanaka, K. Adachi, S. Yamazaki, Analyst 138, 2536–2539 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Rasuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adineh, E., Rasuli, R. Facile synthesis of decorated graphene oxide sheets with WO3 nanoparticles. Appl. Phys. A 120, 1587–1592 (2015). https://doi.org/10.1007/s00339-015-9359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9359-x

Keywords

Navigation