Skip to main content
Log in

Synthesis of different copper nanostructures by the use of polyol technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Self-seeding polyol synthesis method, without additives, was employed for the fabrication of different copper nanostructures. The pertinent parameters including temperature, copper concentration and molar ratio of poly(vinylpyrrolidone) (PVP) to copper were assessed for achieving different size and morphology of copper nanostructures, i.e., nanowire, nanosphere and nanocube. It was found that PVP-to-copper molar ratio has the most significant effect on the geometry of the copper nanostructures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.J. Ziegler, R.C. Doty, K.P. Johnston, B.A. Korgel, Synthesis of organic monolayer-stabilized copper nanocrystals in supercritical water. J. Am. Chem. Soc. 123(32), 7797–7803 (2001)

    Article  Google Scholar 

  2. C.F. Monson, A.T. Woolley, DNA-templated construction of copper nanowires. Nano Lett. 3(3), 359–363 (2003)

    Article  ADS  Google Scholar 

  3. Y. Feng, X. Zheng, Plasma-enhanced catalytic CuO nanowires for CO oxidation. Nano Lett. 10(11), 4762–4766 (2010)

    Article  ADS  Google Scholar 

  4. A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, B.J. Wiley, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv. Mater. 22(32), 3558–3563 (2010)

    Article  Google Scholar 

  5. M. Mohl, P. Pusztai, A. Kukovecz, Z. Konya, J. Kukkola, K. Kordas, R. Vajtai, P.M. Ajayan, Low-temperature large-scale synthesis and electrical testing of ultralong copper nanowires. Langmuir 26(21), 16496–16502 (2010)

    Article  Google Scholar 

  6. A. Rathmell, B. Wiley, The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv. Mater. 23(41), 4798–4803 (2011)

    Article  Google Scholar 

  7. H. Guo, L. Na, Y. Chen, Zh Wang, Q. Xie, T. Zheng, N. Gao, Sh Li, J. Kang, D. Cai, D.L. Peng, Copper nanowires as fully transparent conductive electrodes. Sci. Rep. 3, 2323 (2013)

    ADS  Google Scholar 

  8. H.H. Huang, F.Q. Yan, Y.M. Kek, C.H. Chew, G.Q. Xu, W. Ji, P.S. Oh, S.H. Tang, Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13(2), 172–175 (1997)

    Article  Google Scholar 

  9. R.V. Kumar, Y. Mastai, Y. Diamant, A. Gedanken, Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix. J. Mater. Chem. 11(4), 1209–1213 (2001)

    Article  Google Scholar 

  10. G. Vitulli, M. Bermini, S. Bertozzi, E. Pitzalis, P. Salvadori, S. Coluccia, G. Martra, Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen. Chem. Mater. 14(3), 1183–1186 (2002)

    Article  Google Scholar 

  11. C.L. Kitchens, C.B. Roberts, Copper nanoparticle synthesis in compressed liquid and supercritical fluid reverse micelle systems. Ind. Eng. Chem. Res. 43(19), 6070–6081 (2004)

    Article  Google Scholar 

  12. Y. Chang, M.L. Lye, H.C. Zeng, Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir 21(9), 3746–3748 (2005)

    Article  Google Scholar 

  13. Y.Q. Liu, M. Zhang, F.X. Wang, G.B. Pan, Facile microwave-assisted synthesis of uniform single-crystal copper nanowires with excellent electrical conductivity. RSC Adv. 2, 11235–11237 (2012)

    Article  Google Scholar 

  14. S. Xu, X. Sun, H. Ye, T. You, X. Song, S. Sun, Selective synthesis of copper nanoplates and nanowires via a surfactant-assisted hydrothermal process. Mater. Chem. Phys. 120(1), 1–5 (2010)

    Article  Google Scholar 

  15. Zh Yuxin, Y. Zhang, Y. Li, Z. Yan, Soft synthesis of single-crystal copper nanowires of various scales. New J. Chem. 36, 130–138 (2012)

    Article  Google Scholar 

  16. Y. Zhao, Y. Zhang, Y. Li, Zh He, Z. Yan, Rapid and large-scale synthesis of Cu nanowires via a continuous flow solvothermal process and its application in dye-sensitized solar cells (DSSCs). RSC Advances 2(11), 1544–11551 (2012)

    Google Scholar 

  17. F. Fievet, J.P. Lagier, B. Beaudoin, M. Filgarz, B. Blin, Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32(33), 198–205 (1989)

    Article  Google Scholar 

  18. Y. Sun, Y. Xia, Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 14(11), 833–837 (2002)

    Article  Google Scholar 

  19. B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-controlled synthesis of metal nanostructures: the case of silver. Chem. Eur. J. 11(2), 454–463 (2005)

    Article  Google Scholar 

  20. B.K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Colloid. Interf. Sci. 311(2), 417–424 (2007)

    Article  Google Scholar 

  21. W.J. Zhang, P. Chen, Q.S. Gao, Y.H. Zhang, Y. Tang, High-concentration preparation of silver nanowires: restraining in situ nitric acidic etching by steel-assisted polyol method. Chem. Mater. 20(5), 1699–1704 (2008)

    Article  Google Scholar 

  22. P.Y. Silvert, K. Tekaia-Elhissen, Synthesis of monodisperse submicronic gold particles by the polyol process. Solid State Ionics 82(1–2), 53–60 (1995)

    Article  Google Scholar 

  23. J. Xiong, Y.W.Q. Xue, X. Wu, Synthesis of highly stable dispersions of nanosized copper particles using l-ascorbic acid. Green Chem. 13(4), 900–904 (2011)

    Article  Google Scholar 

  24. Q.L. Zhang, Z.M. Yang, B.J. Ding, X.Z. Lan, Y.J. Guo, Preparation of copper nanoparticles by chemical reduction method using potassium borohydride. Trans. Nanferrous Met. Soc. China 20, 240–244 (2010)

    Article  Google Scholar 

  25. H.X. Zhang, U. Siegert, R. Liu, W.B. Cai, Facile fabrication of ultrafine copper nanoparticles in organic solvent. Nanoscale Res. Lett. 4(7), 705–708 (2009)

    Article  ADS  Google Scholar 

  26. M. Blosi, S. Albonetti, M. Dondi, C. Maretelli, G. Baldi, Microwave-assisted polyol synthesis of Cu nanoparticles. J. Nanopart. Res. 13(1), 127–138 (2011)

    Article  Google Scholar 

  27. Y. Wang, P. Chen, M. Liu, Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnology 17(24), 6000–6006 (2006)

    Article  ADS  Google Scholar 

  28. S. Chang, K. Chen, Q. Hua, Y. Ma, W. Huang, Evidence for the growth mechanisms of silver nanocubes and nanowires. J. Phys. Chem. C 115(16), 7979–7986 (2011)

    Article  Google Scholar 

  29. Y.G. Sun, B. Mayers, T. Herricks, Y.N. Xia, Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett. 3(7), 955–960 (2003)

    Article  ADS  Google Scholar 

  30. L. Samiee, M. Dehghani Mobarake, R. Karami, M. Ayazi, Developing of ethylene glycol as a new reducing agent for preparation of Pd-Ag/PSS composite membrane for hydrogen separation. J. Petrol Sci. Technol. 2(2), 25–32 (2012)

    Google Scholar 

  31. C.C. Luo, Y.H. Zhang, X.W. Zeng, Y.W. Zeng, Y.G. Wang, The role of poly(ethylene glycol) in the formation of silver nanoparticles. J. Colloid. Interf. Sci. 288(2), 444–448 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Pirooz Hoveida Marashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Fatmehsari, D.H. & Marashi, S.P.H. Synthesis of different copper nanostructures by the use of polyol technique. Appl. Phys. A 120, 1579–1586 (2015). https://doi.org/10.1007/s00339-015-9358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9358-y

Keywords

Navigation