Skip to main content
Log in

Effect of initial tension on mechanics of adhered graphene blisters

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of initial tension on mechanics of adhered graphene blisters is investigated by extending Hencky’s solution to cases with an initial tension. The system parameters including maximum blister deflection, pressure difference across the membrane, and critical delamination pressure under various initial tensions are modeled and calculated. The dependences of critical pressure on the radius and depth of etched microcavity are also demonstrated and compared with the previous work which does not consider the initial tension. The results show that the added adhesion energy between monolayer graphene membrane and SiO2 substrate can reach 0.0954 J/m2 with a reported maximum initial tension of 2.4 N/m taken into account, which accounts for 21.2 % of the measured average value 0.45 J/m2. Thus, the initial tension should be considered in further adhesion energy measurements of graphene/substrate interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896

    Article  ADS  Google Scholar 

  2. Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins et al., 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966), 662 (2010). doi:10.1126/science.1184289

    Article  ADS  Google Scholar 

  3. Y. Xu, Z.D. Guo, H.B. Chen et al., In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures. Appl. Phys. Lett. 99(13), 133109 (2011). doi:10.1063/1.3643899

    Article  ADS  Google Scholar 

  4. A.D. Smith, F. Niklaus, A. Paussa et al., Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett. 13(7), 3237–3242 (2013). doi:10.1021/nl401352k

    Article  ADS  Google Scholar 

  5. S.E. Zhu, M.K. Ghatkesar, C. Zhang et al., Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 102(16), 161904 (2013). doi:10.1063/1.4802799

    Article  ADS  Google Scholar 

  6. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009). doi:10.1038/NNANO.2009.58

    Article  ADS  Google Scholar 

  7. T. Mueller, F.N. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297–301 (2010). doi:10.1038/NPHOTON.2010.40

    Article  Google Scholar 

  8. J.S. Bunch, A.M. Van Der Zande, S.S. Verbridge et al., Electromechanical resonators from graphene sheets. Science 315(5811), 490–493 (2007). doi:10.1126/science.1136836

    Article  ADS  Google Scholar 

  9. K.M. Milaninia, M.A. Baldo, A. Reina et al., All graphene electromechanical switch fabricated by chemical vapor deposition. Appl. Phys. Lett. 95(18), 183105 (2009). doi:10.1063/1.3259415

    Article  ADS  Google Scholar 

  10. P. Li, Z. You, G. Haugstad et al., Acceptor deactivation in individual silicon nanowires: from thick to ultrathin. Appl. Phys. Lett. 98(25), 253103 (2011). doi:10.1063/1.3602924

    Article  ADS  Google Scholar 

  11. Z. Zong, C.L. Chen, M.R. Dokmeci et al., Direct measurement of graphene adhesion on silicon surface by intercalation of nanoparticles. J. Appl. Phys. 107(2), 026104 (2010). doi:10.1063/1.3294960

    Article  ADS  Google Scholar 

  12. J.S. Bunch, S.S. Verbridge, J.S. Alden et al., Impermeable atomic membranes from graphene sheets. Nano Lett. 8(8), 2458–2462 (2008). doi:10.1021/nl801457b

    Article  ADS  Google Scholar 

  13. C. Lee, X. Wei, J.W. Kysar et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). doi:10.1126/science1157996

    Article  ADS  Google Scholar 

  14. S.P. Koenig, N.G. Boddeti, M.L. Dunn et al., Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6(9), 543–546 (2011). doi:10.1038/nnano.2011.123

    Article  ADS  Google Scholar 

  15. N.G. Boddeti, S.P. Koenig, R. Long et al., Mechanics of adhered, pressurized graphene blisters. J. Appl. Mech. 80(4), 040909 (2013). doi:10.1115/1.4024255

    Article  ADS  Google Scholar 

  16. R.A. Barton, B. Ilic, A.M. van der Zande et al., High, size-dependent quality factor in an array of graphene mechanical resonators. Nano Lett. 11(3), 1232–1236 (2011). doi:10.1021/nl1042227

    Article  ADS  Google Scholar 

  17. C.Y. Chen, S. Rosenblatt, K.I. Bolotin et al., Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4(12), 861–867 (2009). doi:10.1038/nnano.2009.267

    Article  ADS  Google Scholar 

  18. M.Y. Huang, T.A. Pascal, H.J. Kim et al., Electronic-mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations. Nano Lett. 11(3), 1241–1246 (2011). doi:10.1021/nl104227t

    Article  ADS  Google Scholar 

  19. L.D. Wang, J.J. Travis, A.S. Cavanagh et al., Ultrathin oxide films by atomic layer deposition on graphene. Nano Lett. 12(7), 3706–3710 (2012). doi:10.1021/nl3014956

    Article  ADS  Google Scholar 

  20. H. Hencky, Über den spannungszustand in kreisrunden platten mit verschwindender biegungssteiflgkeit. Z. Math. Phys. 63, 311–317 (1915)

    Google Scholar 

  21. U. Komaragiri, M.R. Begley, J.G. Simmonds, The mechanical response of freestanding circular elastic films under point and pressure loads. J. Appl. Mech. 72(2), 203–212 (2005). doi:10.1115/1.1827246

    Article  ADS  MATH  Google Scholar 

  22. J.J. Vlassak, W.D. Nix, A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7(12), 3242–3249 (1992). doi:10.1557/JMR.1992.3242

    Article  ADS  Google Scholar 

  23. K.T. Wan, Y.W. Mai, Fracture mechanics of a new blister test with stable crack growth. Acta Metall. Mater. 43(11), 4109–4115 (1995)

    Article  Google Scholar 

  24. J.G. Williams, Energy release rates for the peeling of flexible membranes and the analysis of blister tests. Int. J. Fract. 87(3), 265–288 (1997). doi:10.1023/A:1007314720152

    Article  Google Scholar 

  25. A.N. Gent, L.H. Lewandowski, Blow-off pressures for adhering layers. J. Appl. Polym. Sci. 33(5), 1567–1577 (1987). doi:10.1002/app.1987.070330512

    Article  Google Scholar 

  26. J.U. Lee, D. Yoon, H. Cheong, Estimation of Young’s modulus of graphene by Raman spectroscopy. Nano Lett. 12(9), 4444–4448 (2012). doi:10.1021/nl301073q

    Article  ADS  Google Scholar 

  27. J. Zabel, R.R. Nair, A. Ott et al., Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. Nano Lett. 12(2), 617–621 (2012). doi:10.1021/nl203359n

    Article  ADS  Google Scholar 

  28. D. Metten, F. Federspiel, M. Romeo et al., Probing built-in strain in freestanding graphene monolayers by Raman spectroscopy. Phys. Status Solidi B 250(12), 2681–2686 (2013). doi:10.1002/pssb.201300220

    Article  ADS  Google Scholar 

  29. D. Metten, F. Federspiel, M. Romeo et al., All-optical blister test of suspended graphene using micro-Raman spectroscopy. Phys. Rev. Appl. 2(5), 054008 (2014). doi:10.1103/PhysRevApplied.2.054008

    Article  ADS  Google Scholar 

  30. A.L. Kitt, Z.N. Qi, S. Rémi et al., How graphene slides: measurement and theory of strain-dependent frictional forces between graphene and SiO2. Nano Lett. 13(6), 2605–2610 (2013). doi:10.1021/nl4007112

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinzhen Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, P., Xu, P. Effect of initial tension on mechanics of adhered graphene blisters. Appl. Phys. A 120, 1503–1509 (2015). https://doi.org/10.1007/s00339-015-9344-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9344-4

Keywords

Navigation