Advertisement

Applied Physics A

, Volume 120, Issue 4, pp 1497–1502 | Cite as

Hydrogenated nanocrystalline silicon thin films with promising thermoelectric properties

  • Joana Loureiro
  • Tiago Mateus
  • Sergej Filonovich
  • Marisa Ferreira
  • Joana Figueira
  • Alexandra Rodrigues
  • Brian F. Donovan
  • Patrick E. Hopkins
  • Isabel Ferreira
Article

Abstract

The search for materials with suitable thermoelectric properties that are environmentally friendly and abundant led us to investigate p- and n-type hydrogenated nanocrystalline silicon (nc-Si:H) thin films, produced by plasma-enhanced chemical vapor deposition. The Seebeck coefficient and power factor were measured at room temperature showing optimized values of 512 µV K−1 and 3.6 × 10−5 W m−1 K−2, for p-type, and −188 µV K−1 and 2.2 × 10−4 W m−1 K−2, for n-type thin films. The thermoelectric output power of one nc-Si:H pair of both n- and p-type materials is ~91 µW per material cm3, for a thermal gradient of 8 K. The output voltage and current values show a linear dependence with the number of pairs interconnected in series and/or parallel and show good integration performance.

Keywords

Thermoelectric Property Bi2Te3 Spectroscopic Ellipsometry Bulk Layer Nanocrystalline Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by the Portuguese Agency of Innovation (Adi) under project QREN/3435-Nanoxides, by the Portuguese Science and Technology Foundation (FCT), Ministry for Education and Science (MEC), under PEst-C/CTM/LA0025/2011 (Strategic Project—LA 25—2011–2012) and mainly by the NANOTEG project: ENIAC/002/2010. This work was partially supported by the Commonwealth Research Commercialization Fund of Virginia (MF14S-012-En) and Financial Assistance Award No. 01-79-142414, awarded by the US Department of Commerce Economic Development Administration, to the University of Virginia. The content is solely the responsibility of the authors and does not necessarily represent the official views of the US Department of Commerce Economic Development Administration. The material is based upon work partially supported by the Air Force Office of Scientific Research under AFOSR Award No. 5010-UV-AFOSR-0067. The authors would like to thank Márcia Vilarigues from the Conservation Department of FCT/UNL for the micro-Raman measurements and insight.

References

  1. 1.
    W. Fulkerson, J. Moore, R. Williams, R. Graves, D. McElroy, Phys. Rev. 167, 765 (1968)CrossRefADSGoogle Scholar
  2. 2.
    T. Geballe, G. Hull, Phys. Rev. 98, 940 (1955)CrossRefADSGoogle Scholar
  3. 3.
    J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou, NPG Asia Mater. 2, 152 (2010)CrossRefGoogle Scholar
  4. 4.
    P. Pichanusakorn, P. Bandaru, Mater. Sci. Eng. R Rep. 67, 19 (2010)CrossRefGoogle Scholar
  5. 5.
    C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010)CrossRefGoogle Scholar
  6. 6.
    S. Filonovich, H. Aguas, I. Bernacka-Wojcik, C. Gaspar, M. Vilarigues, L. Silva et al., Vacuum 83, 1253 (2009)CrossRefGoogle Scholar
  7. 7.
    S.A. Filonovich, H. Águas, T. Busani, A. Vicente, A. Araújo, D. Gaspar et al., Sci. Technol. Adv. Mater. 13, 045004 (2012)CrossRefGoogle Scholar
  8. 8.
    Y. He, C. Yin, G. Cheng, L. Wang, X. Liu, G. Hu, J. Appl. Phys. 75, 797 (1994)CrossRefADSGoogle Scholar
  9. 9.
    P.E. Hopkins, J.R. Serrano, L.M. Phinney, S.P. Kearney, T.W. Grasser, C.T. Harris, J. Heat Transf. 132, 081302 (2010)CrossRefGoogle Scholar
  10. 10.
    D.G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004)CrossRefADSGoogle Scholar
  11. 11.
    A.J. Schmidt, X. Chen, G. Chen, Rev. Sci. Instrum. 79, 114902 (2008)CrossRefADSGoogle Scholar
  12. 12.
    J. Loureiro, N. Neves, R. Barros, T. Mateus, R. Santos, F. Sergej et al., J. Mater. Chem. A 2, 6649 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Loureiro, R. Santos, A. Nogueira, F. Wyczisk, L. Divay, S. Reparaz et al., J. Mater. Chem. A 2, 6456 (2014)CrossRefGoogle Scholar
  14. 14.
    A. Patterson, Phys. Rev. 56, 978 (1939)CrossRefADSGoogle Scholar
  15. 15.
    N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, D. Narducci, Nanotechnology 24, 205402 (2013)CrossRefADSGoogle Scholar
  16. 16.
    B.M. Foley, H.J. Brown-Shaklee, J.C. Duda, R. Cheaito, B.J. Gibbons, D. Medlin et al., Appl. Phys. Lett. 101, 231908 (2012)CrossRefADSGoogle Scholar
  17. 17.
    B.F. Donovan, B.M. Foley, J.F. Ihlefeld, J.P. Maria, P.E. Hopkins, Appl. Phys. Lett. 105(8), 082907 (2014)CrossRefADSGoogle Scholar
  18. 18.
    L. Xu, M.P. Garrett, B. Hu, J. Phys. Chem. C 116, 13020 (2012)CrossRefGoogle Scholar
  19. 19.
    T.M. Tritt, D. Weston, in Thermal Conductivity, ed. by T.M. Tritt (Springer, US, 2004), pp. 187–203Google Scholar
  20. 20.
    Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, C. Dames, Nano Lett. 11, 2206 (2011)CrossRefADSGoogle Scholar
  21. 21.
    R. Lechner, H. Wiggers, A. Ebbers, J. Steiger, M.S. Brandt, M. Stutzmann, Phys. Status Solidi Rapid Res. Lett. 1, 262 (2007)CrossRefADSGoogle Scholar
  22. 22.
    N. Petermann, N. Stein, G. Schierning, R. Theissmann, B. Stoib, M.S. Brandt et al., J. Phys. D Appl. Phys. 44, 174034 (2011)CrossRefADSGoogle Scholar
  23. 23.
    Y. Hyun, Y. Park, W. Choi, J. Kim, T. Zyung, M. Jang, Nanotechnology 23(40), 405707 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Joana Loureiro
    • 1
  • Tiago Mateus
    • 1
  • Sergej Filonovich
    • 1
  • Marisa Ferreira
    • 1
  • Joana Figueira
    • 1
  • Alexandra Rodrigues
    • 1
  • Brian F. Donovan
    • 2
  • Patrick E. Hopkins
    • 2
  • Isabel Ferreira
    • 1
  1. 1.CENIMAT/I3N, Departamento de Ciências dos Materiais, Faculdade de Ciências e Tecnologia, FCTUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations