Skip to main content
Log in

Photoluminescence investigations and thermal activation energy evaluation of Fe3+-doped PVA films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we study the inclusion mechanism of Fe3+ ions in a polyvinyl alcohol (PVA) matrix. Pure and Fe3+-doped PVA films, using FeCl3 solution, are prepared by a solution casting method. The effect of Fe3+ doping on the photoluminescence (PL) behavior of PVA is investigated in the temperature range from 10 to 300 K. The PL intensity is found to decrease as the temperature increases for the samples slightly doped. This behavior is attributed to the phonon diffusion by the photo-created electron–hole pairs. However, this behavior is completely inverted when the content of Fe3+ increases. The first author has already published a work discussing the possible explanations of such a behavior where the PL intensity increases with temperature. This paper is devoted to study the thermal activations energy and its variation with doping. Therefore, the PL integrated intensity as a function of 1/T is simulated by the Arrhenius model for the samples whose PL intensity decreases with temperature. However, for the other samples, a model of two activation energies is used. The gap energy values and the PL spectra of all samples at 300 K were used to justify the suggested transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.M. Zidan, J. Appl. Polym. Sci. 88, 104–111 (2003)

    Article  Google Scholar 

  2. S. Rajendran, M. Sivakumar, R. Subadevi, Mater. Lett. 58, 641–649 (2004)

    Article  Google Scholar 

  3. R.I. Mohamed, A.M. Gadaa, Egypt J. Soc. 23, 277–279 (2000)

    Google Scholar 

  4. K. Yamaura, N. Kuranuki, M. Suzuki, T. Tonigami, S. Matsuzawa, J. Appl. Polym. Sci. 41, 2409–2425 (1990)

    Article  Google Scholar 

  5. T. Takeda, K. Nakagawa, H. Fujiwara, Nonlinear Opt. 7, 295–301 (1994)

    Google Scholar 

  6. J.S. Miller (ed.), Extended Linear Chain Compounds (Plenum, New York, 1982)

    Google Scholar 

  7. R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar, J. Alloys. Compd. 538, 212–219 (2012)

    Article  Google Scholar 

  8. W. Wu, S. Liang, L. Shen, Z. Ding, H. Zheng, W. Su, L. Wu, J. Alloys. Compd. 520, 213–219 (2012)

    Article  Google Scholar 

  9. E. Badamshina, M. Gafurova, J. Mater. Chem. 22, 9427–9438 (2012)

    Article  Google Scholar 

  10. G.V. Kumar, R. Chandramani, Appl. Surf. Sci. 255, 7047–7050 (2009)

    Article  ADS  Google Scholar 

  11. G. Kaur, R.K. Verma, D.K. Rai, S.B. Rai, J. Lumin. 132, 1683–1687 (2012)

    Article  Google Scholar 

  12. M.N. Charis, H.S. Cheng, A.D. Aleksandra, A.M.C. Ng, C.C.L. Fredrick, W.K.J. Chan, J. Appl. Polym. Sci. 122, 1572–1578 (2011)

    Article  Google Scholar 

  13. E. Filippo, A. Serra, D. Manno, Actuators B 138, 625–630 (2009)

    Article  Google Scholar 

  14. N. Khalifa, B. Yacoubi, A. Bardaoui, R. Chtourou, Colloid Polym. Sci. 291, 2705–2709 (2013)

    Article  Google Scholar 

  15. A. Tawansi, A. El-Khodary, M.M. Abdelnaby, Curr. Appl. Phys. 5, 572–578 (2005)

    Article  ADS  Google Scholar 

  16. R. Kostic, M. Romcevic´, N. Romcevic´, L. Klopotowski, J. Kossut, J. Kuljanin, Opt. Mat. 30, 1177–1182 (2008)

    Article  Google Scholar 

  17. N. Khalifa, A. Souissi, I. Attar, M. Daoudi, R. Chtourou, Opt. Laser Technol. 54, 335–338 (2013)

    Article  ADS  Google Scholar 

  18. Ch.L. Raju, J.L. Rao, N.O. Gopal, B.C.V. Reddy, Mater. Chem. Phys. 101, 423–427 (2007)

    Article  Google Scholar 

  19. N.M. Gasanly, A. Aydinli, N.S. Yuksek, J. Phys. Condens. Mat. 14, 13685–13692 (2002)

    Article  ADS  Google Scholar 

  20. N.S. Yuksek, N.M. Gasanly, A. Aydinli, H. Ozkan, M. Acikgoz, Cryst. Res. Technol. 39, 800–806 (2004)

    Article  Google Scholar 

  21. J. Krustok, H. Collan, K. Hjelt, J. App. Phy. 81, 1442–1445 (1997)

    Article  ADS  Google Scholar 

  22. G. Saint-Girons, I. Sagnes, J. Appl. Phys. 91, 10115–10118 (2002)

    Article  ADS  Google Scholar 

  23. J. Rihani, V. Sallet, N. Yahyaoui, J.C. Harmand, M. Oueslati, R. Chtourou, J. Lumin. 129, 251–255 (2009)

    Article  Google Scholar 

  24. A. Szymansky, M. Kryszesky, J. Polym. Sci. 22, 867–879 (1969)

    Google Scholar 

  25. N. Khalifa, H. Kaouach, R. Chtourou, Opt. Mater. 45, 9–12 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Khalifa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalifa, N., Kaouach, H., Zaghdoudi, W. et al. Photoluminescence investigations and thermal activation energy evaluation of Fe3+-doped PVA films. Appl. Phys. A 120, 1469–1474 (2015). https://doi.org/10.1007/s00339-015-9340-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9340-8

Keywords

Navigation