Skip to main content
Log in

Lasing from an individual ZnO hexagonal microrod on the Au surface coated by a nanometer-scaled SiO2 layer

  • Rapid Communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrate that an individual ZnO hexagonal microrod on the surface of Au substrates coated by a nanometer-scaled SiO2 layer can become a source for manufacture miniature ZnO plasmon lasers by surface plasmon polariton coupling with whispering-gallery modes (WGMs), and the SiO2 layer can tune the modes and intensity of ZnO emission. We achieve an abnormally low-threshold plasmonic WGM lasing from a ZnO hexagonal rod, and the threshold is 0.36 KW/cm2. These investigations show that this coupling mode holds a potential of ZnO hexagonal micro- and nanorods for data storage, bio-sensing, optical communications, as well as all-optic integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. A.P. Abiyasa, S.F. Yu, S.P. Lau, E.S.P. Leong, H.Y. Yang, Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance. Appl. Phys. Lett. 90, 231106 (2007)

    Article  ADS  Google Scholar 

  2. W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, W. Wang, Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires. CrystEngComm 13, 2336 (2011)

    Article  Google Scholar 

  3. C.-S. Wang, H.-Y. Lin, J.-M. Lin, Y.-F. Chen, Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles. Appl. Phys. Exp. 5, 062003 (2012)

    Article  ADS  Google Scholar 

  4. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, T. Franck, High speed silicon Mach-Zehnder modulator. Opt. Exp. 13, 3129–3135 (2005)

    Article  ADS  Google Scholar 

  5. W.M. Green, M.J. Rooks, L. Sekaric, Y.A. Vlasov, Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Exp. 15, 17106–17113 (2007)

    Article  ADS  MATH  Google Scholar 

  6. R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photon. 2, 496–500 (2008)

    Article  Google Scholar 

  7. V.J. Sorger, X. Zhang, Spotlight on plasmon lasers. Science 333, 709–710 (2001)

    Article  ADS  Google Scholar 

  8. V.J. Sorger, Z. Ye, R.F. Oulton, Y. Wang, G. Bartal, X. Yin, X. Zhang, Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat. Commun. 2, 331 (2001)

    Article  MATH  Google Scholar 

  9. H.-S. Chu, E.-P. Li, P. Bai, R. Hegde, Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Appl. Phys. Lett. 96, 221103 (2010)

    Article  ADS  Google Scholar 

  10. X.-Y. Zhang, A. Hu, J.Z. Wen, T. Zhang, X.-J. Xue, Y. Zhou, W.W. Duley, Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides. Opt. Exp. 18, 18945–18959 (2010)

    Article  ADS  MATH  Google Scholar 

  11. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009)

    Article  ADS  MATH  Google Scholar 

  12. R.M. Ma, R.F. Oulton, V.J. Sorger, G. Bartal, X. Zhang, Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat. Mater. 10, 110–113 (2011)

    Article  ADS  Google Scholar 

  13. B. Nikoobakht, C. Burda, M. Braun, M. Hun, M.A. El-Sayed, The quenching of CdSe quantum dots photoluminescence by gold nanoparticles in solution. Photochem. Photobiol. 75, 591–597 (2002)

    Article  MATH  Google Scholar 

  14. J. Lee, H.S. Shim, M. Lee, J.K. Song, D. Lee, Size-controlled electron transfer and photocatalytic activity of ZnO–Au nanoparticle composites. J. Phys. Chem. Lett. 2, 2840–2845 (2011)

    Article  Google Scholar 

  15. M.D.L. Ruiz Peralta, U. Pal, R.S. Zeferino, Photoluminescence (PL) quenching and enhanced photocatalytic activity of Au-decorated ZnO nanorods fabricated through microwave-assisted chemical synthesis. ACS Appl. Mater. Interfaces 4, 4807–4816 (2012)

    Article  MATH  Google Scholar 

  16. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  17. S.A. Maier, P.G. Kik, H.A. Atwater, Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss. Appl. Phys. Lett. 81, 1714–1716 (2002)

    Article  ADS  Google Scholar 

  18. A.V. Krasavin, A.V. Zayats, Silicon-based plasmonic waveguides. Opt. Exp. 18, 11791–11799 (2010)

    Article  ADS  Google Scholar 

  19. T.H. Lin, T.T. Chen, C.L. Cheng, H.Y. Lin, Y.F. Chen, Selectively enhanced band gap emission in ZnO/Ag2O nanocomposites. Opt. Exp. 17, 4342 (2009)

    Article  ADS  Google Scholar 

  20. V.S. Ilchenko, A.B. Matsko, Optical resonators with whispering-gallery modes-part II: applications. IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006)

    Article  Google Scholar 

  21. Y.H. Yang, Y. Zhang, N.W. Wang, C.X. Wang, B.J. Li, G.W. Yang, ZnO nanocone: application in fabrication of the smallest whispering gallery optical resonator. Nanoscale 3, 592–597 (2011)

    Article  ADS  Google Scholar 

  22. N. Wang, J. Dong, Y. Yang, Y. Zhang, X. He, C. Wang, B. Li, G. Yang, General strategy for nanoscopic light source fabrication. Adv. Mater. 23, 2937–2940 (2011)

    Article  MATH  Google Scholar 

  23. N. Wang, X. Chen, Y. Yang, J. Dong, C. Wang, G. Yang, Diffuse reflection inside a hexagonal nanocavity. Sci. Rep. 3, 1298 (2013)

    ADS  Google Scholar 

  24. H. Dong, Y. Yang, G. Yang, Directional emission from ZnO hexagonal disks. ACS Appl. Mater. Interfaces 6, 3093–3098 (2014)

    Article  Google Scholar 

  25. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–458 (2009)

    Article  ADS  Google Scholar 

  26. R. Cole, Y. Sugawara, J. Baumberg, S. Mahajan, M. Abdelsalam, P. Bartlett, Easily coupled whispering gallery plasmons in dielectric nanospheres embedded in gold films. Phys. Rev. Lett. 97, 137401 (2006)

    Article  ADS  Google Scholar 

  27. N.K. Hon, A.W. Poon, in Surface Plasmon Resonance Enhanced Coupling to Whispering-Gallery Modes in Optical Micropillar Resonators, Conference on lasers and electro-optics/quantum electronics and laser science conference and photonic applications systems technologies, Long Beach, California, 2006/05/21, Optical Society of America: Long Beach, California, 2006, p QMI2

  28. S.I. Shopova, R. Rajmangal, S. Holler, S. Arnold, Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl. Phys. Lett. 98, 243104 (2011)

    Article  ADS  Google Scholar 

  29. J. Swaim, J. Knittel, W.P. Bowen, in Enhancing the Sensitivity of Whispering Gallery Mode Biosensors Using Plasmons, Frontiers in optics 2011/Laser Science XXVII, San Jose, California, 2011/10/16, Optical Society of America: San Jose, California, 2011, p FTuJ4

  30. J.R. Lakowicz, Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337, 171–194 (2005)

    Article  MATH  Google Scholar 

  31. Y.H. Yang, J.W. Dong, N.W. Wang, G.W. Yang, Whispering gallery mode enhanced luminescence from an individual ZnO micro- and nanoscaled optical resonator. J. Appl. Phys. 109, 093511 (2011)

    Article  ADS  Google Scholar 

  32. M. Mahanti, D. Basak, Enhanced emission properties of Au/SiO2/ZnO nanorod layered structure: effect of SiO2 spacer layer and role of interfacial charge transfer. RSC Adv. 4, 15466 (2014)

    Article  Google Scholar 

  33. J. Zheng, C. Zhou, M. Yu, J. Liu, Different sized luminescent gold nanoparticles. Nanoscale 4, 4073–4083 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China (91233203) and the State Key Laboratory of Optoelectronic Materials and Technologies of Sun Yat-sen University supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H.M., Yang, Y.H. & Yang, G.W. Lasing from an individual ZnO hexagonal microrod on the Au surface coated by a nanometer-scaled SiO2 layer. Appl. Phys. A 120, 817–821 (2015). https://doi.org/10.1007/s00339-015-9333-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9333-7

Keywords

Navigation