Skip to main content
Log in

Physical properties of chalcogenide Sn–Bi–S graded thin films annealed in argon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The development of cost-effective and non-toxic thin film materials is vital for fabrication of solar cells. We are presenting a combinatorial synthesis approach (CSA) for the deposition of chalcogenide Sn–Bi–S graded thin films by thermal evaporation. Post-deposition thermal annealing in the temperature range of 200–500 °C in an argon atmosphere has been carried out for the Sn–Bi–S thin films. The effect of annealing treatment and initial composition on the structural properties of the Sn–Bi–S graded thin films was studied by using energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), and Raman spectroscopy. XRD measurements showed that the thin films were grown in polycrystalline structure. Different microstructural parameters such as crystallite size, dislocation density, and microstrain were estimated after post-deposition thermal treatment and found annealing temperature dependent. From the transmission spectra the estimated optical band gap energy values were found in the range 1.27–1.43 eV for the (Sn/Bi) molar ratio of 2.18–0.67 in a typical sample annealed at 400 °C. Photoconductivity response was determined for incident light of wavelength 300–1100 nm and was observed to be annealing temperature and Sn/Bi molar ratio dependent. Photoconductivity was also noted to depend upon the Sn/Bi molar ratio with Sn-rich samples giving the strongest response. Sn-rich compositions also showed p-type conductivity over the temperature range of 350–400 °C. These findings show that the CSA has potential for the screening of high-quality Sn–Bi–S thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P.P. Gladyshev, S.V. Filin, A.I. Puzynin, I.A. Tanachev, A.V. Rybakova, V.V. Tuzova, S.A. Kozlovskiy, V.F. Gremenok, A.V. Mudryi, E.P. Zaretskaya, V.B. Zalesskiy, V.M. Kravchenko, U.R. Leonova, A.A. Khodin, V.A. Pilipovich, A.M. Polikanin, G.S. Khrypunov, E.P. Chernyh, N.A. Kovtun, E.K. Belonogov, V.M. Ievlev, M.B. Dergacheva, V.N. Stacuk, L.A. Fogel, J. Phys. Conf. Ser. 291, 012049 (2011)

    Article  ADS  Google Scholar 

  2. H. Wang, Int. J. Photoenergy 2011, 801292 (2011)

    Article  Google Scholar 

  3. K.V. Khot, S.S. Mali, N.B. Pawar, R.M. Mane, V.V. Kondalkar, V.B. Ghanwat, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, J. Mater. Sci. Mater. Electron. 25, 3762–3770 (2014)

    Article  Google Scholar 

  4. R.M. Mane, V.B. Ghanwat, V.V. Kondalkar, K.V. Khot, S.R. Mane, P.S. Patil, P.N. Bhosale, Proc. Mater. Sci. 6, 1285–1291 (2014)

    Article  Google Scholar 

  5. N.R. Paudel, C. Xiao, Y. Yan, J. Mater. Sci. Mater. Electron. 25, 1991–1998 (2014)

    Article  Google Scholar 

  6. S.G. Kumar, K.S.R. Koteswara Rao, Energy Environ. Sci. 7, 45–102 (2014)

    Article  Google Scholar 

  7. K.V. Khot, S.S. Mali, N.B. Pawar, R.R. Kharade, R.M. Mane, V.V. Kondalkar, P.B. Patil, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, New J. Chem. 38, 5964–5974 (2014)

    Article  Google Scholar 

  8. D.H. Hwang, J.H. Ahn, K.N. Hui, K.S. Hui, Y.G. Son, Nanoscale Res. Lett. 7, 26 (2012)

    Article  ADS  Google Scholar 

  9. R.M. Mane, S.R. Mane, R.R. Kharade, P.N. Bhosale, J. Alloys Compd. 491(1–2), 321–324 (2010)

    Article  Google Scholar 

  10. N. Ali, R. Ahmed, A. Shaari, I. Rahim, M. Shah, A. Hussain, N. Ahmad, S.M. Abbas, Braz. J. Phys. 44, 733–738 (2014)

    Article  ADS  Google Scholar 

  11. M.V. Reddy, G. Sreedevi, C. Park, R.W. Miles, K.T.R. Reddy, Curr. Appl. Phys. (2015). doi:10.1016/j.cap.2015.01.022

    Google Scholar 

  12. A. Begum, A. Hussain, A. Rahman, Chalcogenide Lett. 8(4), 283–289 (2011)

    Google Scholar 

  13. O.E. Ogah, K.R. Reddy, G. Zoppi, I. Forbes, R.W. Miles, Thin Solid Films 519, 7425 (2011)

    Article  ADS  Google Scholar 

  14. H. Dittrich, A. Stadler, D. Topa, H.J. Schimper, A. Basch, Phys. Status Solidi C 6(5), 1141 (2009)

    Article  ADS  Google Scholar 

  15. G.H. Tariq, K. Hutchings, D.W. Lane, K.D. Rogers, M. Anis-ur-Rehman, J. Phys. D Appl. Phys. 46(48), 485302 (2013)

    Article  Google Scholar 

  16. T. Gebhardt, D. Music, T. Takahashi, J.M. Schneider, Thin Solid Films 520, 5491 (2012)

    Article  Google Scholar 

  17. E.F. Kaelble, Handbook of X-rays: For Diffraction, Emission, Absorption, and Microscopy (McGraw-Hill, New York, 1967)

    Google Scholar 

  18. S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan, Sol. Energy Mat. Sol. C 82, 187 (2004)

    Article  Google Scholar 

  19. Z.R. Khan, M. Zulfequar, M.S. Khan, Mater. Sci. Eng. B 174, 145 (2010)

    Article  Google Scholar 

  20. V. Balasubramanian, N. Suriyanarayanan, S. Prabahar, S. Srikanth, Chalcogenide Lett. 8, 671 (2011)

    Google Scholar 

  21. M. Ashraf, S.M.J. Akhtar, A.F. Khan, Z. Ali, A. Qayyum, J. Alloy. Compd. 509, 2414 (2011)

    Article  Google Scholar 

  22. Y. Xiao, H. Cao, K. Liu, S. Zhang, V. Chernow, Nanotechnology 21, 145601 (2010)

    Article  ADS  Google Scholar 

  23. I.P. Parkin, L.S. Price, T.G. Hibbert, K.C. Molloy, J. Mater. Chem. 11, 1486 (2001)

    Article  Google Scholar 

  24. P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, Adv. Energy Mater. 1(6), 1116 (2011)

    Article  Google Scholar 

  25. N.R. Mathews, C.C. Garcıa, I.Z. Torres, Mater. Sci. Semicond. Process. 16, 29 (2013)

    Article  Google Scholar 

  26. P.U. Rajalakshmi, R. Oommen, C, Sanjeeviraja. Chalcogenide Lett. 8, 649 (2011)

    Google Scholar 

  27. C.L.C. Triana, E. Banguero, P. Bartolo-Pérez, G. Gordillo, Braz. J. Phys. 41, 15 (2011)

    Article  ADS  Google Scholar 

  28. N.R. Mathews, C.C. Garcıa, I.Z. Torres, Mater. Sci. Semicond. Process. 16, 29 (2013)

    Article  Google Scholar 

  29. C. Shi, Z. Chen, G. Shi, R. Sun, X. Zhan, X. Shen, Thin Solid Films 520, 4898–4901 (2012)

    Article  ADS  Google Scholar 

  30. G. Gordillo, M. Botero, J.S. Oyola, Microelectron. J. 39, 1351 (2008)

    Article  Google Scholar 

  31. R.K. Srivastava, N. Pandey, S.K. Mishra, Mater. Sci. Semicond. Process. 16, 1659 (2013)

    Article  Google Scholar 

  32. A. Bera, D. Basak, Appl. Phys. Lett. 94, 163119 (2009)

    Article  ADS  Google Scholar 

  33. R. Kripal, A.K. Gupta, R.K. Srivastava, S.K. Mishra, Spectrochim. Acta A 79, 1605 (2011)

    Article  ADS  Google Scholar 

  34. A. Maurya, P. Chauhan, S.K. Mishra, R.K. Srivastava, J. Alloys Compd. 509, 8433 (2011)

    Article  Google Scholar 

  35. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New Jersey, 2006)

    Google Scholar 

  36. K.V. Khot, S.S. Mali, R.R. Kharade, R.M. Mane, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, J. Mater. Sci. Mater. Electron. 25, 5606–5617 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This study was completed in support of Higher Education Commission Pakistan for supporting and providing funds for the abroad visit of one of the authors (G. H. Tariq) through ‘International Research Support Initiative Program (IRSIP)’ and ‘Indigenous 5000 Scholarship Program’ and was also supported by the EPSRC-funded SUPERGEN Project, Photovoltaic Materials for the twentieth century (EP/F029624/2). We are thankful to Michael Sellwood for his help with the deposition equipment and to Richard Hall for encapsulating samples in Pyrex glass ampoules. We are thankful to laboratory colleagues Rob McCracken and Kyle Hutchings for their continuous help during synthesis and characterization and to Jon Painter for providing EDX characterization facility. We are also thankful to Mr. M. Saqib for XRD characterization. One of the authors (G. H. Tariq) is also thankful to the department of education, Govt. of the Punjab, Pakistan, for granting him a leave for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anis-ur-Rehman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, G.H., Lane, D.W. & Anis-ur-Rehman, M. Physical properties of chalcogenide Sn–Bi–S graded thin films annealed in argon. Appl. Phys. A 120, 1407–1414 (2015). https://doi.org/10.1007/s00339-015-9325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9325-7

Keywords

Navigation