Skip to main content
Log in

Thermodynamic, structural and surface properties in Sn–Zn melt at 750 K

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thermodynamic, microscopic and surface properties of liquid Sn–Zn alloys at 750 K are reviewed in the framework of different statistical mechanical models. Flory’s model and quasi-chemical approximation (QCA) have been considered to deduce information on the concentration dependence of the thermodynamic and structural properties. The size-dependent atomic interaction has got special attention in Flory’s model, while in QCA the atomic interaction leading to the formation of like-atom clusters is assumed. Both models predict almost the same value of the interaction energy parameter in the Sn–Zn alloys, and it is found to be temperature dependent. The asymmetry in the thermodynamic properties of the alloys is explained to a great extent, and the analysis of the microscopic properties suggests that the Sn–Zn alloys are weakly segregating in nature throughout the whole range of the composition. Meanwhile, the validity of these models in describing the thermodynamic behaviour of the alloys is also examined. QCA is found to be more appropriate choice for the study of the energetics of the Sn–Zn alloys at 750 K. The comparative analysis of the surface properties under different assumptions reveals that self-associating mixture method better explains the surface behaviour in the alloys. The study indicates nonlinear variation in the concentration dependence of both the surface concentration and the surface tension of the alloys. The surface tension is found to increase with increase in Zn concentration, and the surface of the alloys is enriched with Sn atoms which segregate to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Ezaki, T. Nambu, R. Ninomiya, Y. Nakahara, C.Q. Wang, M. Morinaga, J. Mater. Sci. Mater. Electron. 13, 269 (2002). doi:10.1023/A:1015555505709

    Article  Google Scholar 

  2. U.R. Kattner, JOM 54, 45 (2002). doi:10.1007/BF02709189

    Article  Google Scholar 

  3. K. Suganuma, K.-S. Kim, J. Mater. Sci. Mater. Electron. 18, 121 (2007). doi:10.1007/s10854-006-9018-2

    Article  Google Scholar 

  4. Z. Moser, J. Dutkiewicz, W. Gasior, J. Salawa, Bull. Alloys Phase Diagr. 6, 330 (1985). doi:10.1007/BF02880511

    Article  Google Scholar 

  5. K. Suganuma, K. Niihara, T. Shoutoku, Y. Nakamura, J. Mater. Res. 13, 2859 (1998). doi:10.1557/JMR.1998.0391

    Article  Google Scholar 

  6. T. Nahlawi, Tin-Zinc Alloys Plating System, Sustainable Surface Engineering, ASETS Defense, New Orleans, Louisiana, USA, 8–10 February 2011

  7. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelly, Selected Values of the Thermodynamic Properties of Binary Alloys (ASM, Metal Park, Ohio, 1973), p. 1333

    Google Scholar 

  8. I.S. Jha, D. Adhikari, J. Kumar, B.P. Singh, Phase Transit. 84, 1075 (2011). doi:10.1080/01411594.2011.574913

    Article  Google Scholar 

  9. P.J. Flory, J. Chem. Phys. 10, 51 (1942). doi:10.1063/1.1723621

    Article  Google Scholar 

  10. I.S. Jha, A.K. Khan, B.C. Kumar, BIBECHANA 7, 26 (2011). doi:10.3126/bibechana.v7i0.4040

    Google Scholar 

  11. R.N. Singh, Can. J. Phys. 65, 309 (1987). doi:10.1139/p87-038

    Article  Google Scholar 

  12. R.N. Singh, F. Sommer, Rep. Prog. Phys. 60, 57 (1997). doi:10.1088/0034-4885/60/1/003

    Article  Google Scholar 

  13. B.C. Anusionwu, C.A. Madhu, C.E. Orji, Pramana- J. Physics 72, 951 (2009). doi:10.1007/s12043-009-0088-6

    Google Scholar 

  14. L.C. Prasad, R.N. Singh, G.P. Singh, Phys. Chem. Liq. 27, 179 (1994). doi:10.1080/00319109408029523

    Article  Google Scholar 

  15. B.C. Anusionwu, E.O. Ilo-Okeke, J. Alloys Comp. 397, 79 (2005). doi:10.1016/j.jallcom.2004.12.048

    Article  Google Scholar 

  16. L.C. Prasad, R.K. Jha, Phys. Stat. Sol. 202, 2709 (2005). doi:10.1002/pssa.200520080

    Article  Google Scholar 

  17. L.C. Prasad, Y. Xie, A. Mikula, Non-Cryst. Solids 250, 316 (1999). doi:10.1016/S0022-3093(99)00255-0

    Article  Google Scholar 

  18. R. Novakovic, Non-Cryst. Solids 356, 1593 (2010). doi:10.1016/j.jnoncrysol2010.05.055

    Article  Google Scholar 

  19. N.H. March, J.A. Alonso, Phys. Chem. Liq. 46, 522 (2008). doi:10.1080/00319100801930466

    Article  Google Scholar 

  20. E. Ricci, S. Amore, D. Giuranno, R. Novakovic, A. Tuissi, N. Sobczak, R. Nowak, B. Korpala, G. Bruzda, J. Chem. Phys. 140, 1 (2014). doi:10.1063/1.4879775

    Article  Google Scholar 

  21. W.-H. Shih, D. Stroud, Phys. Rev. B 32, 804 (1985). doi:10.1103/PhysREvB.32.804

    Article  Google Scholar 

  22. Z. Moser, W. Gasior, J. Pstrus, J. Electron. Mater. 30, 1104 (2001). doi:10.1007/s11664-001-0136-6

    Article  Google Scholar 

  23. S. Amore, J. Brillo, I. Egry, R. Novakovic, Appl. Surf. Sci. 257, 7739 (2011). doi:10.1016/j.apsusc.2011.04.019

    Article  Google Scholar 

  24. D. Adhikari, Phase Transit. 84, 308 (2011). doi:10.1080/01411594.2010.536088

    Article  Google Scholar 

  25. B.P. Singh, R.P. Koirala, I.S. Jha, D. Adhikari, Phys. Chem. Liq. 51, 247 (2013). doi:10.1080/00319104.2012.747200

    Article  Google Scholar 

  26. A.B. Bhatia, R.N. Singh, Phys. Chem. Liq. 11, 285 (1982). doi:10.1080/00319108208080752

    Article  Google Scholar 

  27. B.C. Anusionwu, Phys. Chem. Liq. 42, 245 (2004). doi:10.1080/00319100410001657624

    Article  Google Scholar 

  28. S. Chaubey, Indian J. Eng. Mater. S. (IJEMS) 16, 364 (2009)

    Google Scholar 

  29. B. Karaoglu, W.H. Young, Phys. Chem. Liq. 30, 187 (1995). doi:10.1080/00319109508031653

    Article  Google Scholar 

  30. D. Adhikari, I.S. Jha, B.P. Singh, Phil. Mag. 90, 2687 (2010). doi:10.1080/14786431003745302

    Article  Google Scholar 

  31. E.A. Brandes (ed.), Smithells Metals Reference Book, 6th edn. (Butterworths, UK, 1983), pp. 6–14

    Google Scholar 

Download references

Acknowledgments

One of the authors (R.P. Koirala) is thankful to the University Grants Commission (UGC), Nepal, for providing financial support under Mini Research Project [Grant Ref. No. 61-2071/04/30] to pursue the research. Further he extends his sincere gratitude to Prof. Dr. Pradeep Raj Pradhan (Postgraduate Department of Physics, M.M.A.M. Campus, Tribhuvan University, Biratnagar, Nepal), Prof. Dr. Ashok Kumar (Postgraduate Department of Physics, M.M.A.M. Campus, Tribhuvan University, Biratnagar, Nepal, and Prof. Dr. L.N. Jha (Former Head, Central Department of Physics, Tribhuvan University, Kirtipur, Nepal) for their fruitful suggestions and encouraging discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Adhikari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B.P., Koirala, R.P., Jha, I.S. et al. Thermodynamic, structural and surface properties in Sn–Zn melt at 750 K. Appl. Phys. A 120, 1347–1356 (2015). https://doi.org/10.1007/s00339-015-9316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9316-8

Keywords

Navigation