Skip to main content
Log in

Dynamics of graphene nanoribbon with carbon nanotubes coexisting with [Bmim][Cl] molecules

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations have been performed to investigate the dynamics of graphene nanoribbon (GNR) on single-walled carbon nanotubes (SWNTs) coexisting with 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]). The results indicate that in the wrapping and encapsulating processes when GNR interacts with SWNT, [Bmim][Cl] has an extremely different dynamics, showing an interesting dependence on tube size. Two GNRs can easily bring the [Bmim][Cl] into the hollow area of the formed double helix in the SWNT. The sequence of the interaction between these substances is E GNR-SWNT > E GNR-[Bmim][Cl] > E [Bmim][Cl]-SWNT. A high temperature will hinder the wrapping dynamics behavior of the GNR and even militate against the insertion dynamics of [Bmim][Cl]. The [Bmim][Cl] has nearly no effect on the dynamics of GNR on SWNT. Furthermore, the GNR can transport [Bmim][Cl] in the SWNT by expelling them. The proposed discoveries eventually provide a powerful way to fabricate nanoscale materials and devices and eventually tune their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. N. Patra, Y.B. Song, P. Kral, Self-assembly of graphene nanostructures on nanotubes. ACS Nano 5, 1798–1804 (2011)

    Article  Google Scholar 

  3. Y.Y. Jiang, H. Li, Y.F. Li, H.Q. Yu, K.M. Liew, Y.Z. He, X.F. Liu, Helical encapsulation of graphene nanoribbon into carbon nanotube. ACS Nano 5, 2126–2133 (2011)

    Article  Google Scholar 

  4. Y.F. Li, F.W. Sun, H. Li, Helical wrapping and insertion of graphene nanoribbon to single-walled carbon nanotube. J. Phys. Chem. C 115, 18459–18467 (2011)

    Article  Google Scholar 

  5. M. Antonietti, D.B. Kuang, B. Smarsly, Y. Zhou, Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew. Chem. Int. Ed. 43, 4988–4992 (2004)

    Article  Google Scholar 

  6. T. Welton, Room-temperature ionic liquids, solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  Google Scholar 

  7. A. Balducci, F. Soavi, M. Mastragostino, The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors. Appl. Phys. A 82, 627–632 (2006)

    Article  ADS  Google Scholar 

  8. S. Righi, A. Morfino, P. Galletti, C. Samori, A. Tugnoli, C. Stramigioli, Comparative cradle-to-gate life cycle assessments of cellulose dissolution with 1-butyl-3-methylimidazolium chloride and N-methyl-morpholine-N-oxide. Green Chem. 13, 367–375 (2011)

    Article  Google Scholar 

  9. A.C. Salvador, M.C. Santos, J.A. Saraiva, Effect of the ionic liquid [bmim]Cl and high pressure on the activity of cellulase. Green Chem. 12, 632–635 (2010)

    Article  Google Scholar 

  10. Y.D. Liu, Y. Zhang, G.Z. Wu, J. Hu, Coexistence of liquid and solid phases of bmim-PF6 ionic liquid on mica surfaces at room temperature. J. Am. Chem. Soc. 128, 7456–7457 (2006)

    Article  Google Scholar 

  11. L.L. Xie, A.F. Reguillon, X.X. Wang, X.Z. Fu, S.P. Rostaing, G. Toussaint, C. Geantet, M. Vrinat, M. Lemire, Selective extraction of neutral nitrogen compounds found in diesel feed by 1-butyl-3-methyl-imidazolium chloride. Green Chem. 10, 524–531 (2008)

    Article  Google Scholar 

  12. H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications—overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364 (1998)

    Article  Google Scholar 

  13. S.W. Bunte, H. Sun, Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field. J. Phys. Chem. B 104, 2477–2489 (2000)

    Article  Google Scholar 

  14. H. Li, J.M. Knaup, E. Kaxiras, J.J. Vlassak, Stiffening of organosilicate glasses by organic cross-linking. Acta Mater. 59, 44–52 (2011)

    Article  Google Scholar 

  15. W.H. Duan, C.M. Wang, Nonlinear bending and stretching of a circular graphene sheet under a central point load. Nanotechnology 20, 075702 (2009)

    Article  ADS  Google Scholar 

  16. D. Xia, Q.Z. Xue, J. Xie, H.J. Chen, C. Lv, F. Besenbacher, M.M. Dong, Fabrication of carbon nanoscrolls from monolayer graphene. Small 6, 2010–2019 (2010)

    Article  Google Scholar 

  17. Y.F. Li, F.W. Sun, H. Li, Helical wrapping and insertion of graphene nanoribbon to single-walled carbon nanotube. J. Phys. Chem. C 115, 18459–18467 (2011)

    Article  Google Scholar 

  18. N. Patra, Y.B. Song, P. Kŕal, Self-assembly of graphene nanostructures on nanotubes. ACS Nano 5, 1798–1804 (2011)

    Article  Google Scholar 

  19. Q. Li, Z.J. Li, M. Chen, Y. Fang, Real-time study of graphene’s phase transition in polymer matrices. Nano Lett. 9, 2129–2132 (2009)

    Article  ADS  Google Scholar 

  20. M.L. Głóbwka, D. Martynowski, K. Kozłowska, Stacking of six-membered aromatic rings in crystals. J. Mol. Struct. 474, 81–89 (1999)

    Article  ADS  Google Scholar 

  21. C.A. Hunter, J.K.M. Sanders, The nature of.pi.-.pi. interactions. J. Am. Chem. Soc. 112, 5525–5534 (2009)

    Article  Google Scholar 

  22. Y. Wang, A.K. Vallabhaneni, B. Qiu, X. Ruan, Two-dimensional thermal transport in graphene: a review of numerical modeling studies. Nanoscale Microscale Thermophys. Eng. 18, 155–182 (2014)

    Article  Google Scholar 

  23. Y.X. Yang, M. Raghunath, Impact of size effect on graphene nanoribbon transport. IEEE Electron Dev. Lett. 31, 237–239 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51302126), the Natural Science Foundation of Shandong Province, China (Nos. ZR2013EMM001 and ZR2013AL008), and the Startup Foundation for Doctoral Research of Linyi University, Shandong Province, China (No. LYDX2013BS004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y. Dynamics of graphene nanoribbon with carbon nanotubes coexisting with [Bmim][Cl] molecules. Appl. Phys. A 120, 1331–1337 (2015). https://doi.org/10.1007/s00339-015-9313-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9313-y

Keywords

Navigation