Skip to main content

Solution-combustion synthesized aluminium-doped spinel (LiAl x Mn2−x O4) as a high-performance lithium-ion battery cathode material

Abstract

High-performing LiAl x Mn2−x O4 (x = 0, 0.125, 0.25, 0.375, and 0.5) spinel cathode materials for lithium-ion battery were developed using a solution combustion method. The as-synthesized cathode materials have spinel cubic structure of LiMn2O4 without any impurity peak and accompanied with peak shift as doping with aluminium. LiAl0.375Mn1.625O4 (first cycle capacity = 113.1 mAh g−1) retains 85 % (96.2 mAh g−1), while pristine LiMn2O4 electrode (first cycle capacity = 135.8 mAh g−1) fades quickly and retains only 54 % (73.9 mAh g−1) after 50 cycles. The electrochemical performance of all the cathode samples prepared using the SCM is comparable to those reported for Al-doped LiMn2O4 spinel cathode materials. The experimental lattice parameter of LiAl x Mn2−x O4 was validated by ab initio calculations and correlated with the first cycle capacity of materials. The variation in lattice parameter as a result of Al doping greatly enhanced the cyclability of discharge capacity of the LiMn2O4 spinel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4, 366 (2005)

    Article  ADS  Google Scholar 

  2. 2.

    H. Şahan, H. Göktepe, Ş. Patat, A. Ülgen, J. Alloys Compd. 509, 4235 (2011)

    Article  Google Scholar 

  3. 3.

    A. Yuan, L. Tian, W. Xu, Y. Wang, J. Power Sources 195, 5032 (2010)

    Article  Google Scholar 

  4. 4.

    M. Prabu, M. Reddy, S. Selvasekarapandian, G.S. Rao, B. Chowdari, Electrochim. Acta 88, 745 (2013)

    Article  Google Scholar 

  5. 5.

    W. Zhou, S. Bao, B. He, Y. Liang, H. Li, Electrochim. Acta 51, 4701 (2006)

    Article  Google Scholar 

  6. 6.

    L. Xiao, Y. Zhao, Y. Yang, Y. Cao, X. Ai, H. Yang, Electrochim. Acta 54, 545 (2008)

    Article  Google Scholar 

  7. 7.

    T. Yi, Y. Zhu, R. Zhu, L. Zhou, P. Li, J. Shu, Ionics 15, 177 (2009)

    Article  Google Scholar 

  8. 8.

    R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, R. Rajalakshmi, J. Power Sources 187, 565 (2009)

    Article  Google Scholar 

  9. 9.

    D. Guo, B. Li, Z. Chang, H. Tang, X. Xu, K. Chang, E. Shangguan, X. Yuan, H. Wang, Electrochim. Acta 134, 338 (2014)

    Article  Google Scholar 

  10. 10.

    C.J. Curtis, J. Wang, D.L. Schulz, J. Electrochem. Soc. 151, A590 (2004)

    Article  Google Scholar 

  11. 11.

    S. Myung, S. Komaba, N. Kumagai, J. Electrochem. Soc. 148, A482 (2001)

    Article  Google Scholar 

  12. 12.

    K. Lee, H. Choi, J. Lee, J. Mater. Sci. Lett. 20, 1309 (2001)

    Article  Google Scholar 

  13. 13.

    C. Peng, H. Bai, Q. Li, Y. Guo, J. Huang, C. Su, J. Guo, Int. J. Electrochem. Sci. 10, 3885 (2015)

    Google Scholar 

  14. 14.

    F.P. Nkosi, C.J. Jafta, M. Kebede, L. le Roux, M.K. Mathe, K.I. Ozoemena, RSC Adv. 5, 32256 (2015)

    Article  Google Scholar 

  15. 15.

    K.C. Stella, A.S. Nesaraj, Iran. J. Mater. Sci. Eng. 7, 36 (2010)

    Google Scholar 

  16. 16.

    M. Segall, P.J.D. Lindan, M. Probert, C. Pickard, P. Hasnip, S. Clark, M. Payne, J. Phys. Condens. Matter 14, 2717 (2002)

    Article  ADS  Google Scholar 

  17. 17.

    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr. 220, 567 (2005)

    Article  Google Scholar 

  18. 18.

    M.A. Kebede, N. Kunjuzwa, C.J. Jafta, M.K. Mathe, K.I. Ozoemena, Electrochim. Acta 128, 172 (2014)

    Article  Google Scholar 

  19. 19.

    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    MathSciNet  Article  ADS  Google Scholar 

  20. 20.

    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133–A1138 (1965)

    MathSciNet  Article  ADS  Google Scholar 

  21. 21.

    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    MathSciNet  Article  ADS  Google Scholar 

  22. 22.

    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  23. 23.

    J.P. Perdew, J. Chevary, S. Vosko, K.A. Jackson, M.R. Pederson, D. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  24. 24.

    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  25. 25.

    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    MathSciNet  Article  ADS  Google Scholar 

  26. 26.

    T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768 (1992)

    Article  Google Scholar 

  27. 27.

    M.A. Kebede, M.J. Phasha, N. Kunjuzwa, L.J. le Roux, D. Mkhonto, K.I. Ozoemena, M.K. Mathe, Sustain. Energy Technol. Assess. 5, 44 (2014)

    Article  Google Scholar 

  28. 28.

    T. Kakuda, K. Uematsu, K. Toda, M. Sato, J. Power Sources 167, 499 (2007)

    Article  Google Scholar 

  29. 29.

    S.J. Bao, Y.Y. Liang, W.J. Zhou, B.L. He, H.L. Li, J. Power Sources 154, 239 (2006)

    Article  ADS  Google Scholar 

  30. 30.

    R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, C.W. Dunnill, D.H. Gregory, J. Mater. Process. Technol. 208, 520 (2008)

    Article  Google Scholar 

  31. 31.

    H. Zhang, Y. Xu, D. Liu, X. Zhang, C. Zhao, Electrochim. Acta 125, 225 (2014)

    Article  ADS  Google Scholar 

  32. 32.

    Y. Huang, R. Jiang, S.J. Bao, Y. Cao, D. Jia, Nanoscale Res. Lett. 4, 353 (2009)

    Article  ADS  Google Scholar 

  33. 33.

    G. Amatucci, J.M. Tarascon, J. Electrochem. Soc. 149, K31 (2002)

    Article  Google Scholar 

  34. 34.

    T. Tsumura, A. Shimizu, M. Inagaki, Solid State Ion. 90, 197 (1996)

    Article  Google Scholar 

  35. 35.

    C. Julien, S. Ziolkiewicz, M. Lemal, M. Massot, J. Mater. Chem. 11, 1837 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the CSIR for supporting this work. MK would like to acknowledge the NRF for supporting this work financially.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mesfin A. Kebede.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kebede, M.A., Phasha, M.J., Kunjuzwa, N. et al. Solution-combustion synthesized aluminium-doped spinel (LiAl x Mn2−x O4) as a high-performance lithium-ion battery cathode material. Appl. Phys. A 121, 51–57 (2015). https://doi.org/10.1007/s00339-015-9311-0

Download citation

Keywords

  • Discharge Capacity
  • Cathode Material
  • Teller Distortion
  • LiMn2O4 Spinel
  • Solution Combustion Method