Skip to main content
Log in

Transfer printing of electrodes for organic devices: nanoscale versus macroscale continuity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

While transfer printing is a powerful technique to prepare micro- and nanostructured thin films, the preparation of continuous large-area electrodes via transfer printing is challenging. In this paper, we find discontinuity on the nanoscale as requirement for the successful transfer printing of large-area (marcoscale) continuous electrodes. We demonstrate that silver films deposited by physical vapor deposition or electroless deposition (ELD) can be used to form top electrodes for organic devices. However, the transfer of ELD films appears more promising. It enables vacuum-free room-temperature processing of metal top electrodes. As a case study, the top electrode of an organic solar cell was fabricated this way. The resulting power conversion efficiency (PCE) of 2.20 % is about 85 % of the PCE of the reference device with a vacuum-deposited silver electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Adv. Mater. 24, 5284 (2012)

    Article  Google Scholar 

  2. R.G. Nuzzo, Proc. Natl. Acad. Sci. U.S.A. 98, 4827 (2001)

    Article  ADS  Google Scholar 

  3. H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, E. Delamarche, Adv. Funct. Mater. 13, 145 (2003)

    Article  Google Scholar 

  4. Y.-L. Loo, R.L. Willett, K.W. Baldwin, J.A. Rogers, J. Am. Chem. Soc. 124, 7654 (2002)

    Article  Google Scholar 

  5. Y.-L. Loo, R.L. Willett, K.W. Baldwin, J.A. Rogers, Appl. Phys. Lett. 81, 562 (2002)

    Article  ADS  Google Scholar 

  6. E. Menard, L. Bilhaut, J. Zaumseil, J.A. Rogers, Langmuir 20, 6871 (2004)

    Article  Google Scholar 

  7. Y.-L. Loo, D.V. Lang, J.A. Rogers, J.W.P. Hsu, B. Laboratories, L. Technologies, M. Hill, Nano Lett. 3, 913 (2003)

    Article  ADS  Google Scholar 

  8. Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan, Y. Han, Adv. Mater. 15, 1009 (2003)

    Article  Google Scholar 

  9. H. Jin, J.C. Sturm, S.I.D. Symp, Dig. Tech. Pap. 40, 597 (2009)

    Article  Google Scholar 

  10. S. Kim, W.S. Lee, J. Lee, I. Park, Nanotechnology 23, 285301 (2012)

    Article  Google Scholar 

  11. K. Chan-mo, C. Hyunduck, L. Hyunkoo, L. Changhee, J. Korean Phys. Soc. 59, 470 (2011)

    Article  ADS  Google Scholar 

  12. D.R. Hines, V.W. Ballarotto, E.D. Williams, Y. Shao, S.A. Solin, J. Appl. Phys. 101, 024503 (2007)

    Article  ADS  Google Scholar 

  13. X. Feng, M.A. Meitl, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Langmuir 23, 12555 (2007)

    Article  Google Scholar 

  14. M.A. Meitl, Z.-T. Zhu, V. Kumar, K.J. Lee, X. Feng, Y.Y. Huang, I. Adesida, R.G. Nuzzo, J.A. Rogers, Nat. Mater. 5, 33 (2005)

    Article  ADS  Google Scholar 

  15. T.-W. Lee, J. Zaumseil, S.H. Kim, J.W.P. Hsu, Adv. Mater. 16, 2040 (2004)

    Article  Google Scholar 

  16. T.-W. Lee, J. Zaumseil, Z. Bao, J.W.P. Hsu, J.A. Rogers, J. Womens, Health (Larchmt) 22, 469 (2013)

    Article  Google Scholar 

  17. A.R. Madaria, A. Kumar, C. Zhou, Nanotechnology 22, 245201 (2011)

    Article  ADS  Google Scholar 

  18. C. Shimada, S. Shiratori, A.C.S. Appl, Mater. Interfaces 5, 11087 (2013)

    Article  Google Scholar 

  19. Y. Saito, J.J. Wang, D.A. Smith, D.N. Batchelder, A simple chemical method for the preparation of silver surfaces for efficient SERS. Langmuir 18(8), 2959–2961 (2002). doi:10.1021/la011554y

    Article  Google Scholar 

  20. K. Zilberberg, F. Gasse, R. Pagui, A. Polywka, A. Behrendt, S. Trost, R. Heiderhoff, P. Görrn, T. Riedl, Adv. Funct. Mater. 24, 1671 (2014)

    Article  Google Scholar 

  21. O. Graudejus, P. Görrn, S. Wagner, A.C.S. Appl, Mater. Interfaces 2, 1927 (2010)

    Article  Google Scholar 

  22. W. Cao, P. Görrn, S. Wagner, Appl. Phys. Lett. 98, 212112 (2011)

    Article  ADS  Google Scholar 

  23. S.P. Lacour, D. Chan, S. Wagner, T. Li, Z. Suo, Appl. Phys. Lett. 88, 204103 (2006)

    Article  ADS  Google Scholar 

  24. H. Schmidt, K. Zilberberg, S. Schmale, H. Flügge, T. Riedl, W. Kowalsky, Appl. Phys. Lett. 96, 243305 (2010)

    Article  ADS  Google Scholar 

  25. S.W. Kettlitz, S. Valouch, U. Lemmer, Appl. Phys. A Mater. Sci. Process. 99, 805 (2010)

    Article  ADS  Google Scholar 

  26. W. Quan, C. Cheng, J. Liu, J. Zhang, D. Yan, D. Qin, Appl. Phys. A Mater. Sci. Process. 104, 47 (2011)

    Article  ADS  Google Scholar 

  27. A. Polywka, A. Vereshchaeva, T. Riedl, P. Görrn, Part. Part. Syst. Charact. 31, 342 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding by the Emmy-Noether-Programm of the Deutsche Forschungsgemeinschaft (DFG). Honeywell Specialty Chemicals Seelze GmbH is acknowledged for the generous supply with P3HT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Görrn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 699 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakob, T., Polywka, A., Stegers, L. et al. Transfer printing of electrodes for organic devices: nanoscale versus macroscale continuity. Appl. Phys. A 120, 503–508 (2015). https://doi.org/10.1007/s00339-015-9299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9299-5

Keywords

Navigation