Skip to main content
Log in

Synthesis, magnetic and microwave electromagnetic properties of dendritic iron

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Iron dendritic micropines are synthesized by a hydrogen reduction, where the hematite dendritic micropines prepared by a hydrothermal method are used as starting materials. The as-obtained dendritic iron exhibits enhanced coercivity and remanent magnetization at room temperature and high complex permittivity at 2–18 GHz due to the peculiar shape anisotropy and good crystallinity. The negative imaginary permeability is observed at 14.5–18.0 GHz, suggesting it has a potential as a left-handed material. The paraffin-based composites containing 30 wt% dendritic irons show large permittivity resulting from the charge polarization and the conductivity and have a minimal reflection loss (RL) of −37.4 dB at 7.4 GHz when the thickness (d) is 2.0 mm. The RL values less than −20 dB are obtained in the frequency range of 5.5–12.9 GHz when d increases from 0.9 to 3.0 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.X. Yu, X.C. Li, R.Z. Gong, Y.F. He, H.H. He, P.X. Lu, J. Alloys Compd. 456, 452 (2008)

    Article  Google Scholar 

  2. G.H. Mu, N. Chen, X.F. Pan, K. Yang, M.Y. Gu, Appl. Phys. Lett. 91, 043110 (2007)

    Article  ADS  Google Scholar 

  3. D.M. Dong, J.G. Guan, W. Wang, W. Li, J. Zhou, Acta Metall. Sin. 45, 1141 (2009)

    Google Scholar 

  4. X.A. Fan, J.G. Guan, W. Wang, G.X. Tong, J. Phys. D Appl. Phys. 42, 075006 (2009)

    Article  ADS  Google Scholar 

  5. M.Z. Wu, H.H. He, Z.S. Zhao, X. Yao, J. Phys. D Appl. Phys. 33, 2398 (2000)

    Article  ADS  Google Scholar 

  6. X.A. Fan, J.G. Guan, Z.Z. Li, F.Z. Mou, G.X. Tong, W. Wang, J. Mater. Chem. 20, 1676 (2010)

    Article  Google Scholar 

  7. R.M. Walser, W. King, IEEE Trans. Magn. 34, 1144 (1998)

    Article  ADS  Google Scholar 

  8. B.S. Zhang, Y. Feng, J. Xiong, Y. Yang, H.X. Lu, IEEE Trans. Magn. 42, 1778 (2006)

    Article  ADS  Google Scholar 

  9. K. Santhi, T.A. Revathy, V. Narayanan, A. Stephen, Appl. Surf. Sci. 316, 491 (2014)

    Article  ADS  Google Scholar 

  10. X.H. Liu, R. Yi, Y.T. Wang, J. Phys. Chem. C 111, 163 (2007)

    Article  MathSciNet  Google Scholar 

  11. X.M. Liu, S.Y. Fu, J. Cryst. Growth 306, 428 (2007)

    Article  ADS  Google Scholar 

  12. M.H. Cao, T.F. Liu, S. Gao, G.B. Sun, X.L. Wu, C.W. Hu, Z.L. Wang, Angew. Chem. Int. Ed. 44, 4197 (2005)

    Article  Google Scholar 

  13. X.M. Zhou, X.W. Wei, Cryst. Growth Des. 9, 7 (2009)

    Article  Google Scholar 

  14. X.Y. Zhang, J.Y. Dai, C.H. Lam, H.T. Wang, P.A. Webley, Q. Li, H. Ong, Acta Mater. 55, 5039 (2007)

    Article  Google Scholar 

  15. D.B. Kuang, A.W. Xu, Y.P. Fang, H.Q. Liu, C. Frommen, D. Fenske, Adv. Mater. 15, 1747 (2003)

    Article  Google Scholar 

  16. X.P. Sun, M. Hagner, Langmuir 23, 9147 (2007)

    Article  Google Scholar 

  17. L.H. Lu, A. Kobayashi, Y. Kikkawa, K. Tawa, Y. Ozaki, J. Phys. Chem. B 110, 23234 (2006)

    Article  Google Scholar 

  18. J.P. Xiao, Y. Xie, R. Tang, M. Chen, X.B. Tian, Adv. Mater. 13, 1887 (2001)

    Article  Google Scholar 

  19. H.C. Zeng, J. Mater. Chem. 16, 649 (2006)

    Article  Google Scholar 

  20. B.Q. Liu, X.P. Zhao, W.R. Zhu, W. Luo, X.C. Cheng, Adv. Funct. Mater. 18, 3523 (2008)

    Article  Google Scholar 

  21. R.H. Kodama, A.E. Berkowitz, E.J. Mcniff, S. Foner, Phys. Rev. Lett. 77, 394 (1996)

    Article  ADS  Google Scholar 

  22. D.H. Han, J.P. Wang, Y.B. Feng, H.L. Luo, J. Appl. Phys. 76, 6591 (1994)

    Article  ADS  Google Scholar 

  23. A. Hartridge, A.K. Bhattacharya, M. Sengupta, C.K. Majumdar, D. Das, S.N. Chintalapudi, J. Magn. Magn. Mater. 176, L89 (1997)

    Article  ADS  Google Scholar 

  24. R.D. Sánchez, J. Rivas, P. Vaqueiro, M.A. López-Quintela, D. Caeiro, J. Magn. Magn. Mater. 247, 92 (2002)

    Article  ADS  Google Scholar 

  25. S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen, K.J. Klabunde, V. Papaefthymiou, A. Kostikast, Phys. Rev. B 45, 9778 (1992)

    Article  ADS  Google Scholar 

  26. L.Y. Zhang, D.S. Xue, X.F. Xu, A.B. Gui, J. Magn. Magn. Mater. 294, 10 (2005)

    Article  ADS  Google Scholar 

  27. A. Verma, A.K. Saxena, D.C. Dube, J. Magn. Magn. Mater. 263, 228 (2003)

    Article  ADS  Google Scholar 

  28. L.J. Deng, M.G. Han, Appl. Phys. Lett. 91, 023119 (2007)

    Article  ADS  Google Scholar 

  29. X.L. Dong, X.F. Zhang, H. Huang, F. Zuo, Appl. Phys. Lett. 92, 013127 (2008)

    Article  ADS  Google Scholar 

  30. Z.B. Li, B. Shen, Y.D. Deng, L. Liu, W.B. Hua, Appl. Surf. Sci. 255, 4542 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Guangxi Natural Science Foundation (2014GXNSFBA118247), Scientific Research Foundation of Guangxi Education Department (200103YB106), Construction Project of Guangxi Key Laboratory (13-051-38) and Doctoral Program of Guangxi University of Science and Technology (11Z07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongqin Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, G., He, F., Zhao, G. et al. Synthesis, magnetic and microwave electromagnetic properties of dendritic iron. Appl. Phys. A 120, 1083–1090 (2015). https://doi.org/10.1007/s00339-015-9283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9283-0

Keywords

Navigation