Applied Physics A

, Volume 121, Issue 2, pp 399–403 | Cite as

Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography

  • Yuhan Yao
  • Yifei Wang
  • He Liu
  • Yuanrui Li
  • Boxiang Song
  • Wei Wu
Invited Paper

Abstract

Nanoimprint lithography is a promising technology for patterning large-area structures in nanometer scale at a low cost. In order to fabricate large-area nanoimprint master mold, interference lithography is widely used in defining periodical structures. However, neither roughness nor structural dimension can be effectively controlled via interference exposure. In this paper, we report a fabrication technique based on V-shaped master mold that can adjust line width of gratings as well as reduce the sidewall roughness. The fabrication of the V-shaped grating master mold is demonstrated, and the line width tuning and smoothening processes are discussed. With the help of the smoothening process, the optical efficiency of smoothened guided-mode resonance grating increased by 75 % from the original sample.

References

  1. 1.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 14(6), 4129–4133 (1996)CrossRefADSGoogle Scholar
  2. 2.
    V. Karagodsky, F.G. Sedgwick, C.J. Chang-Hasnain, Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 18(16), 16973–16988 (2010)CrossRefADSGoogle Scholar
  3. 3.
    Y. Yao, H. Liu, W. Wu, Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting. Appl. Phys. A 115(3), 713–719 (2014)CrossRefADSGoogle Scholar
  4. 4.
    Y. Yao, H. Liu, W. Wu, Fabrication of high-contrast gratings for a parallel spectrum splitting dispersive element in a concentrated photovoltaic system. J. Vac. Sci. Technol. B 32(6), 06FG04 (2014)Google Scholar
  5. 5.
    H. Liu et al., Full-color reflective display system based on high contrast gratings. J. Vac. Sci. Technol. B 32(6), 06FE04 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Switkes, M. Rothschild, Immersion lithography at 157 nm. J. Vac. Sci. Technol. B 19(6), 2353–2356 (2001)CrossRefGoogle Scholar
  7. 7.
    M.G. Kang et al., Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 20(23), 4408–4413 (2008)CrossRefGoogle Scholar
  8. 8.
    G. Philipp et al., Shadow evaporation method for fabrication of sub 10 nm gaps between metal electrodes. Microelectron. Eng. 46(1), 157–160 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Z. Yu et al., Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography. J. Vac. Sci. Technol. B 21(5), 2089–2092 (2003)CrossRefGoogle Scholar
  10. 10.
    S. Wang, R. Magnusson, Theory and applications of guided-mode resonance filters. Appl. Opt. 32(14), 2606–2613 (1993)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yuhan Yao
    • 1
  • Yifei Wang
    • 1
  • He Liu
    • 1
  • Yuanrui Li
    • 1
  • Boxiang Song
    • 1
  • Wei Wu
    • 1
  1. 1.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations