Skip to main content
Log in

Fabrication of multi-walled carbon nanotube thin films via electrophoretic deposition process: effect of water magnetization on deposition efficiency

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the effect of water magnetization was investigated on the performance of electrophoretic deposition (EPD) of multi-walled carbon nanotubes (MWCNTs). Magnetization of water was carried out via two different methods including static and dynamic magnetization processes. It has been found that magnetization of water, as the EPD medium, could enhance several characteristics of MWCNT thin films (MWCNT-TFs). Application of magnetized water as solvent in EPD process resulted in higher electrical conductivity of EPD suspension; consequently, required deposition time was reduced and the electrolysis of water, which is known as one of the main disadvantages of water-based EPDs, was controlled to some extent. Surface morphology of MWCNT-TFs was studied via scanning electron microscopy, and notable enhancement was detected in uniformity and density of MWCNT-TF network. Significant improvement was achieved in electrical conductivity (up to 54 % increase in current) of MWCNT-TF by measuring the current versus voltage characteristics of MWCNT-TFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Qiguan, M. Hiroshi, Carbon Nanotube-Based Thin Films: Synthesis and Properties (InTech, Croatia, 2011)

    Google Scholar 

  2. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9, 1872 (2009)

    Article  ADS  Google Scholar 

  3. A. Gohier, K.H. Kim, E.D. Norman, L. Gorintin, P. Bondavalli, C.S. Cojocaru, Appl. Surf. Sci. 258, 6024 (2012)

    Article  ADS  Google Scholar 

  4. D.S. Hecht, D. Thomas, L. Hu, C. Ladous, T. Lam, Y. Park, G. Irvin, P. Drzaic, J. Soc. Inf. Disp. 17, 941 (2009)

    Article  Google Scholar 

  5. L. Hu, Y. Park, D.S. Hecht, C. Ladous, M. O’Connell, D. Thomas, G. Gruner, G. Irvin, P. Drzaic, Scalable carbon nanotube thin films: Fabrication, properties and device applications. Materials Research Society (MSR), Boston, MA, 1–5 Dec 2008

  6. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002)

    Article  ADS  Google Scholar 

  7. I. Khalakhan, M. Vorokhta, M. Chundak, V. Matolín, Appl. Surf. Sci. 267, 150 (2013)

    Article  ADS  Google Scholar 

  8. N.P. Bansal, A.R. Boccaccini, Ceramics and Composites Processing Methods (Wiley, New York, 2012)

    Book  Google Scholar 

  9. Y. Nakayama, S. Akita, Synth. Met. 117, 207 (2001)

    Article  Google Scholar 

  10. N.I. Sinitsyn, Y.V. Gulyaev, G.V. Torgashov, L.A. Chernozatonskii, Z.Y. Kosakovskaya, Y.F. Zakharchenko, N.A. Kiselev, A.L. Musatov, A.I. Zhbanov, S.T. Mevlyut, O.E. Glukhova, Appl. Surf. Sci. 111, 145 (1997)

    Article  ADS  Google Scholar 

  11. J.H. Dickerson, A.R. Boccaccini, Electrophoretic Deposition of Nanomaterials (Springer, New York, 2011)

    Google Scholar 

  12. L. Hu, D.S. Hecht, G. Grüner, Chem. Rev. 110, 5790 (2010)

    Article  Google Scholar 

  13. L. Besra, M. Liu, Prog. Mater. Sci. 52, 1 (2007)

    Article  Google Scholar 

  14. A.R. Boccaccini, J. Cho, J.A. Roether, B.J.C. Thomas, E. JaneMinay, M.S.P. Shaffer, Carbon 44, 3149 (2006)

    Article  Google Scholar 

  15. B.J.C. Thomas, A.R. Boccaccini, M.S.P. Shaffer, J. Am. Ceram. Soc. 88, 980 (2005)

    Article  Google Scholar 

  16. H. von Both, in Proceedings- Electrochemical Society Pv, 2002

  17. A.V. Kerkar, R.W. Rice, R.M. Spotnitz, U.S. Patent 07/643,888, 18 Jan 1991

  18. O. Sakurada, K. Suzuki, T. Miura, M. Hashiba, J. Mater. Sci. 39, 1845 (2004)

    Article  ADS  Google Scholar 

  19. S. Lebrette, C. Pagnoux, P. Abélard, J. Eur. Ceram. Soc. 26, 2727 (2006)

    Article  Google Scholar 

  20. L. Besra, T. Uchikoshi, T.S. Suzuki, Y. Sakka, J. Am. Ceram. Soc. 91, 3154 (2008)

    Article  Google Scholar 

  21. L. Besra, T. Uchikoshi, T.S. Suzuki, Y. Sakka, J. Eur. Ceram. Soc. 29, 1837 (2009)

    Article  Google Scholar 

  22. B. Ferrari, R. Moreno, Mater. Lett. 28, 353 (1996)

    Article  Google Scholar 

  23. L. Stappers, L. Zhang, O. Van der Biest, J. Fransaer, Mater. Lett. 328, 436 (2008)

    Google Scholar 

  24. L. Besra, M. Liu, Prog. Mater. Sci. 52, 1 (2007)

    Article  Google Scholar 

  25. X.-F. Pang, B. Deng, B. Tang, Mod. Phys. Lett. B. 26(11), 1250069-1–1250069-13 (2012)

    Article  ADS  Google Scholar 

  26. H. Al-Qahtani, Desalination 107, 75 (1996)

    Article  Google Scholar 

  27. E.J.L. Toledo, T.C. Ramalho, Z.M. Magriotis, J. Mol. Struct. 888, 409 (2008)

    Article  ADS  Google Scholar 

  28. F. Moosavi, M. Gholizadeh, J. Magn. Magn. Mater. 354, 239 (2014)

    Article  ADS  Google Scholar 

  29. A.H. Ashour, H.M. Saad, M.M. Ibrahim, Egypt. J. Solids 29(2), 351–362 (2006)

    Google Scholar 

  30. M.-Y. Lin, L.-W. Hourng, C.-W. Kuo, Int. J. Hydrog. Energy 37, 1311 (2012)

    Article  Google Scholar 

  31. J. Oshitani, D. Yamada, M. Miyahara, K. Higashitani, J. Colloid Interface Sci. 210, 1 (1999)

    Article  Google Scholar 

  32. R.D. Ambashta, M. Sillanpää, J. Hazard. Mater. 180, 38 (2010)

    Article  Google Scholar 

  33. K. Higashitani, A. Kage, S. Katamura, K. Imai, S. Hatade, J. Colloid Interface Sci. 156, 90 (1993)

    Article  Google Scholar 

  34. M. Ibrahim, A. Nada, D.E. Kamal, Indian J. Pure Appl. Phys. 44(12), 911–917 (2005)

    Google Scholar 

  35. D. Pavia, G. Lampman, G. Kriz, J. Vyvyan, Introduction to Spectroscopy (Cengage Learning, 2008)

  36. Silverstein, T.C. Morrill, G.C. Bassler, Spectrometric Identification of Organic Compounds (Wiley, New York, 1981)

    Google Scholar 

  37. E. Heister, C. Lamprecht, V. Neves, C. Tîlmaciu, L. Datas, E. Flahaut, B. Soula, P. Hinterdorfer, H.M. Coley, S.R.P. Silva, J. McFadden, ACS Nano 4, 2615 (2010)

    Article  Google Scholar 

  38. M. Ammam, R. Soc. Chem. Adv. 2, 7633 (2012)

    Google Scholar 

  39. J. Cho, K. Konopka, K. Rożniatowski, E. García-Lecina, M.S.P. Shaffer, A.R. Boccaccini, Carbon 47, 58 (2009)

    Article  Google Scholar 

  40. K.-T. Chang, C.-I. Weng, J. Appl. Phys. 100(4), 043917-1–043917-6 (2006)

    Article  ADS  Google Scholar 

  41. C. Du, D. Heldbrant, N. Pan, Mater. Lett. 57, 434 (2002)

    Article  Google Scholar 

  42. A. Sarkar, T. Daniels-Race, Nanomaterials 3, 272 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Mr. M. Karimi is acknowledged for experimental assistance. The authors would like to thank Iran Nanotechnology Initiative Council for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Baniadam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazubandi, B., Moaseri, E., Baniadam, M. et al. Fabrication of multi-walled carbon nanotube thin films via electrophoretic deposition process: effect of water magnetization on deposition efficiency. Appl. Phys. A 120, 495–502 (2015). https://doi.org/10.1007/s00339-015-9276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9276-z

Keywords

Navigation