Skip to main content
Log in

Faraday rotation influence factors in tellurite-based glass and fibers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO2–ZnO–Na2O–BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core–cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Yamane, Y. Asahara, Glasses for Photonics, Chap. 5 (Cambridge University, Cambridge, 2000)

    Book  Google Scholar 

  2. A.M.R. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications. J. Sens. 2012, 1–21 (2012)

    Article  Google Scholar 

  3. H.M. Kim, Enhanced transverse load sensitivity by using a highly birefringent photonic crystal fiber with larger air holes on one axis. Appl. Opt. 49, 3841–3845 (2010)

    Article  ADS  Google Scholar 

  4. J.M. Liu, Photonic Devices, Chap. 7 (Cambridge University, Cambridge, 2005)

    Book  Google Scholar 

  5. K. Bohnert, P. Gabus, J. Nehring, H. Brandle, Temperature and vibration insensitive fiber optical current sensor. J. Lightw. Technol. 20, 267–276 (2002)

    Article  ADS  Google Scholar 

  6. H.J. El-Khozondar, M.S. Müller, Influence of magnetic field inhomogeneity on a magneto-optical current sensor. J. Sens. Technol. 2, 19–22 (2012)

    Article  Google Scholar 

  7. Wu Shijian, Wu Baojian, Simulation model of magneto optical fiber Bragg gratings and its applications in Sagnac interferometers. Front. Optoelectron. China 3(4), 359–363 (2010)

    Article  Google Scholar 

  8. Q. Chen, H. Wang, Q. Wang, Q. Chen, Y. Hao, Modified rod-in-tube for high-NA tellurite glass fiber fabrication: materials and technologies. Appl. Opt. 54(4), 946–952 (2015)

    Article  ADS  Google Scholar 

  9. Y. Shiyu, J. Lousteau, M. Olivero, Analysis of Faraday effect in multimode tellurite glass optical fiber for magneto-optical sensing and monitoring applications. Appl. Opt. 51(19), 4542–4546 (2012)

    Article  ADS  Google Scholar 

  10. P.R. Watekar, Faraday effect in an optical fiber doped with CdSe quantum dots. J. Korean Phys. Soc. 55, 1158–1161 (2009)

    Article  ADS  Google Scholar 

  11. K. Kurosawa, Optical fiber type current sensor utilizing the Faraday effect of the flint glass fiber, in 10th International Conference on Optical Fiber Sensors, Glasgow, UK (1994)

  12. S.J. Prado, L. Villegas-Lelovsky, Magneto-optical properties in IV–VI lead-salt semimagnetic nanocrystals. Nanoscale Res. Lett. 7, 374–380 (2012)

    Article  ADS  Google Scholar 

  13. T. Ishibashi, M. Naganuma, Magneto-optical and optical properties of Pt/Co GMR films with capping layer. J. Phys. Conf. Ser. 303, 012042(1–5) (2011)

    Article  ADS  Google Scholar 

  14. N.F. Borrelli, Faraday rotation in glass. J. Chem. Phys. 41, 3289–3293 (1964)

    Article  ADS  Google Scholar 

  15. A.B. Villaverde, E.C.C. Vasconcellos, Magnetooptical dispersion of Hoya glasses: AOT-5, AOT-44B, and FR-5. Appl. Opt. 21, 1347–1348 (1982)

    Article  ADS  Google Scholar 

  16. I.A. Grishin, V.A. Gur’ev, Magneto-optic and luminescent properties of tellurite glass TeO2–ZnCl2 doped with rare earth elements. Russ. J. Appl. Chem. 77, 1245–1248 (2004)

    Article  Google Scholar 

  17. G.D. Khattak, M.A. Salim, J. Electron Spectrosc. Relat. Phenom. 123, 47–52 (2002)

    Article  Google Scholar 

  18. H. Becquerel, The Faraday and Zeeman effects. Comptes Rendu 125, 679–685 (1897)

    Google Scholar 

  19. B.U. Sheng-li, Y. Ying-hai, M.A. Jing, Wavelength-dependence of Verdet constant of magneto-optic glass and corresponding problems in magneto-optic glass fiber current sensor. J. Magn. Mater. Dev. 34(1), 14–16 (2003)

    Google Scholar 

  20. H. Ahlers, TH Bosselmann, Complete polarization analysis of a magneto-optical current transformer with a new poVarimeter, in Conference of Proceedings on the 7th Optical Fiber Sensors Conference 1990:8

  21. L. Sun, S. Jiang, J.D. Zuegel, J.R. Marciante, Effective Verdet constant in terbium-doped-core phosphate fiber. Opt. Lett. 34, 1699–1701 (2009)

    Article  ADS  Google Scholar 

  22. R.M. Silva, H. Martins, Optical current sensors for high power systems: a review. Appl. Sci. 2(3), 602–628 (2012)

    Article  Google Scholar 

  23. S. Gibson, G.W. Jewell, Pulsed magneto photo elasticity—experimental implementation. J. Strain Anal. Eng. Des. 41(2), 171–182 (2006)

    Article  Google Scholar 

  24. A.E. Puro, K.J.E. Kell, Complete determination of stress in fiber preforms of arbitrary cross section. J. Lightw. Technol. 10, 1010–1014 (1992)

    Article  ADS  Google Scholar 

  25. M.E. Lines, Interaction of light with matter: a theoretical overview, in Handbook of Infrared Optical Materials, ed. by P. Klocek (Marcel Dekker, New York, 1991)

    Google Scholar 

  26. M. Gottlieb, Elastooptic materials, in CRC Handbook of Laser Science and Technology, IV: Optical Materials, Part 2, ed. by M. Weber (Boca Raton, CRC Press, 1986), pp. 319–341

    Google Scholar 

  27. Y. Park, U.C. Paek, Characterization of a stress-applied polarization-maintaining (PM) fiber through photoelastic tomography. J. Lightw. Technol. 21, 997–1004 (2003)

    Article  ADS  Google Scholar 

  28. Y. Park, U.-C. Paek, D.Y. Kim, Complete determination of the stress tensor of a polarization-maintaining fiber by photoelastic tomography. Opt. Lett. 27, 1217–1219 (2002)

    Article  ADS  Google Scholar 

  29. Q. Chen, Q. Chen, A new faraday rotation measurement method for the study on magneto optical property of PbO–Bi2O3–B2O3 glasses for current sensor applications. Open J. Inorg. Non-Met. Mater. 1, 1–7 (2011)

    Google Scholar 

  30. C. Qiuling, W. Hui, C. Qiuping, New Faraday rotation element TeO2–PbO–B2O3–SiO2 for magneto-optical current sensor. J. Mechatron. 2(3), 190–196 (2014)

    Article  Google Scholar 

  31. Q. Chen, Q. Chen, Effect of ceramic crucibles on magneto-optical PbO–Bi2O3–B2O3 glasses properties. New J. Glass Ceram. 2, 41–50 (2012)

    Article  MATH  Google Scholar 

  32. Q. Chen, H. Wang, Q. Wang, Properties of tellurite core/cladding glasses for magneto-optical fibers. J. Non-Cryst. Solids 400, 51–57 (2014)

    Article  ADS  Google Scholar 

  33. Q. Chen, H. Wang, S. Perero, Q. Wang, Q. Chen, Structural, optical and magnetic properties of Fe3O4 sputtered TeO2–PbO–B2O3 and PbO–Bi2O3–B2O3 glasses for sensing applications. J. Non-Cryst. Solids 408, 43–50 (2015)

    Article  ADS  Google Scholar 

  34. Q.P. Chen, W. Lin, Q.L. Chen, S.B. Wang, Study on the effect of Fe3O4 nanoparticle dopants on the properties of magneto optical glasses. J. Adv. Mater. Res. 213, 326–330 (2011)

    Google Scholar 

  35. Q. Chen, M. Zhang, H. Wang, High numerical aperture fibers with diamagnetic core and cladding glasses. J. Non-Cryst. Solids 419, 27–33 (2015)

    Article  ADS  Google Scholar 

  36. G.W. Scherer, Stress-induced index profile distortion in optical waveguides. Appl. Opt. 19(12), 2000–2006 (1980)

    Article  ADS  Google Scholar 

  37. H. Sato, M. Kawase, Temperature dependence of the Faraday effect in As–S glass fiber. Appl. Opt. 24(15), 2300–2303 (1985)

    Article  ADS  Google Scholar 

  38. F. Tian, Analysis of polarization fluctuation in single-mode optical fibers with continuous random coupling. J. Lightw. Technol. 34, 1165–1168 (1987)

    Article  ADS  Google Scholar 

  39. B.J.H. Stadler, T. Mizumoto, Integrated magneto-optical materials and isolators: a review. Integr. Magneto-Opt. Mater. Isol. 6, 0600215 (2014)

    Google Scholar 

  40. M.A. Schmidt, L. Wondrascek, Complex Faraday rotation in microstructured magneto-optical fiber waveguides. Adv. Mater. 23, 2681–2688 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuling Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wang, H., Wang, Q. et al. Faraday rotation influence factors in tellurite-based glass and fibers. Appl. Phys. A 120, 1001–1010 (2015). https://doi.org/10.1007/s00339-015-9268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9268-z

Keywords

Navigation