Skip to main content
Log in

High-temperature annealing effect of α-Al2O3 (0001) substrates with nominal 0.25° miscut toward the a-plane \({\mathbf{ \left( {11\overline{2} 0} \right)}}\) on ZnO films grown by MOCVD

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The annealing effects of c-plane sapphire (α-Al2O3) substrate with a vicinal-cut angle of α = 0.25° toward the a-plane \(\left( {11\overline{2} 0} \right)\) on the quality of epitaxial ZnO films grown by metal organic chemical vapor deposition were studied. The atomic steps formed on sapphire substrate surface by annealing at high temperature were analyzed by atomic force microscopy (AFM). The annealing effects of sapphire substrate on the microstructural and optical properties of the ZnO films were examined by high-resolution X-ray diffraction, scanning electron microscopy, AFM and photoluminescence spectroscopy. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate. X-ray diffraction study revealed that ZnO films deposited on c-plane sapphire substrate annealed at T ≥ 1050 °C exhibit a wurtzite phase and have a c-axis orientation. The decrease in FWHM for (0004) and \(\left( {10\overline{1} 4} \right)\) ZnO peak confirms the improvement of the crystalline quality of ZnO thin film as increasing annealing substrate temperature. Sapphire annealing at 1100 °C for 3 h under oxygen prior to ZnO film growth is the best to achieve ZnO film with good structural and optical quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.M. Peiro, P. Ravirajan, K. Govender, D.S. Boyle, P. O’Brien, D.D.C. Bradley, J. Nelson, J.R. Durrant, J. Mater. Chem. 16, 2088 (2006)

    Article  Google Scholar 

  2. F. Sun, C.X. Shan, S.P. Wang, B.H. Li, Z.Z. Zhang, C.L. Yang, D.Z. Shen, Mater. Chem. Phys. 129, 27 (2011)

    Article  Google Scholar 

  3. J. Bian, W. Liu, J. Sun, H. Liang, J. Mater. Process. Technol. 184, 451 (2007)

    Article  Google Scholar 

  4. G. Du, J. Wang, X. Wang, Vacuum 69, 473 (2003)

    Article  Google Scholar 

  5. I. Sayago, M. Aleixandre, L. Ares, M.J. Fernandez, J.P. Santos, J. Gutierrez et al., Appl. Surf. Sci. 245, 273 (2005)

    Article  ADS  Google Scholar 

  6. F.K. Shan, B.C. Shin, S.W. Jang, Y.S. Yu, J. Eur. Ceram. Soc. 24, 1015 (2004)

    Article  Google Scholar 

  7. F.K. Shan, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, B.C. Shin et al., J. Cryst. Growth 277, 284 (2005)

    Article  ADS  Google Scholar 

  8. J.H. Kim, S.C. Choi, J.Y. Choi, K.S. Kim, G.M. Yan, C.H. Hong et al., Jpn. J. Appl. Phys. 38, 2721 (1999)

    Article  ADS  Google Scholar 

  9. J.R. Heffelfinger, M.W. Bench, C.B. Carter, Surf. Sci. 370, 188 (1997)

    Article  ADS  Google Scholar 

  10. L.P. Van, O. Kurnosikov, J. Cousty, Surf. Sci. 411, 263 (1998)

    Article  ADS  Google Scholar 

  11. O. Kurnosikov, Surf. Sci. 459, 256 (2000)

    Article  ADS  Google Scholar 

  12. L.P. Van, J. Cousty, C. Lubin, Surf. Sci. 549, 157 (2004)

    Article  ADS  Google Scholar 

  13. F. Cuccureddu, S. Murphy, I. Shvets, M. Porcu, H. Zandbergen, N. Sidorov, S. Bozhko, Surf. Sci. 604, 1294 (2010)

    Article  ADS  Google Scholar 

  14. S. Heinze, A. Krtschil, J. Blasing, T. Hempel, P. Veit, A. Dargar, J. Christen, A. Krost, J. Cryt. Growth 308, 170 (2007)

    Article  ADS  Google Scholar 

  15. M. Caglar, Y. Caglar, S.J. Ilican, J. Optoelectron, Adv. Mater. 8, 1410 (2006)

    Google Scholar 

  16. A.K. Singh, V. Viswanath, V.C. Janu, J. Lumin. 129, 874 (2009)

    Article  Google Scholar 

  17. S.S. Tneh, Z. Hassan, K.G. Saw, F.K. Yam, H. Abu Hassan, Phys. B Condens. Matter 405, 2045 (2010)

    Article  ADS  Google Scholar 

  18. Y. Kokubun, H. Kimura, S. Nakagomi, Jpn. J. Appl. Phys. 42, L904 (2003)

    Article  ADS  Google Scholar 

  19. M.A. Boukadhaba, A. Fouzri, C. Saidi, N. Sakly, A. Souissi, A. Bchetnia, C. Sartel, V. Sallet, M. Oumezzine, J. Crys. Growth 395, 14 (2014)

    Article  ADS  Google Scholar 

  20. T. Makino, T. Yasuda, Y. Segawa, A. Ohtomo, K. Tamura, M. Kawasaki, H. Koinuma, Appl. Phys. Lett. 79, 9 (2001)

    Article  Google Scholar 

  21. F. Ozutok, B. Demirselcuk, E. Sarica, S. Turkyilmaz, V. Bilgin, Acta Phys. Polonica. A 121, 53 (2012)

    Google Scholar 

  22. G. Shukla, A. Khare, Appl. Surf. Sci. 255, 7017 (2009)

    Article  ADS  Google Scholar 

  23. D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu, T. Goto, T. Yao, J. Crys. Growth 184, 605 (1998)

    Article  ADS  Google Scholar 

  24. Y. Ma, G.T. Du, J.Z. Yin, T.P. Yang, Y.T. Zhang, Sem. Sci. Tech. 20, 1198 (2005)

    Article  ADS  Google Scholar 

  25. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Status Solidi (b) 241, 231 (2004)

    Article  ADS  Google Scholar 

  26. W. Shan, W. Walukiewicz, J.W. Ager III, K.M. Yu, H.B. Yuan, H.P. Xin, G. Cantwell, J.J. Song, Appl. Phys. Lett. 86, 191911 (2005)

    Article  ADS  Google Scholar 

  27. C. Klingshirn, Phys. Status Solidi (a) 71, 547 (1975)

    Article  ADS  Google Scholar 

  28. D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)

    Article  ADS  Google Scholar 

  29. M. Schirra, R. Schneider, A. Reiser, G.M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C.E. Krill, K. Thonke, R. Sauer, Phys. Rev. B 77, 125215 (2008)

    Article  ADS  Google Scholar 

  30. C.J. Pan, K.F. Lin, W.F. Hsieh, Appl. Phys. Lett. 91, 111907 (2007)

    Article  ADS  Google Scholar 

  31. Y. Zhang, B. Lin, X. Sun, Z. Fu, Appl. Phys. Lett. 86, 131910 (2005)

    Article  ADS  Google Scholar 

  32. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, APPl. Phys. Rev. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  33. J. Dai, H. Su, L. Wang, Y. Pu, W. Fang, F. Jiang, J. Cryst. Growth 290, 426 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Boukadhaba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukadhaba, M.A., Fouzri, A., Sallet, V. et al. High-temperature annealing effect of α-Al2O3 (0001) substrates with nominal 0.25° miscut toward the a-plane \({\mathbf{ \left( {11\overline{2} 0} \right)}}\) on ZnO films grown by MOCVD. Appl. Phys. A 120, 991–1000 (2015). https://doi.org/10.1007/s00339-015-9267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9267-0

Keywords

Navigation