Skip to main content
Log in

Doping dependence of laser-induced transverse thermoelectric voltages in the perovskite Nd2−x Ce x CuO4 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Large laser-induced thermoelectric voltages (LITVs) are measured in the electron-doped Nd2−x Ce x CuO4 thin films grown on the vicinal-cut SrTiO3 substrates by pulsed laser deposition. The dependence of LITV signals upon the doping carrier density is investigated by changing the Ce content of the films. The optimum Ce dopant corresponding to the largest voltage is found and is attributed to the two-dimensional transport behaviors of the localized electrons. The shorter laser irradiation always induces the larger voltage signals in samples with richer Ce content, suggesting the optimum dopant level is sensitive to the wavelength of excitation source. Thus, the behaviors of LITV signals are resulted from both effects of the anisotropic thermoelectric transport and the optical properties of the thin films. The doping dependence related with an anisotropic charge transport may come from the change in carrier density and the modification in energy band configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.L. Chang, A. Kleinhammes, W.G. Moulton, L.R. Testardi, Phys. Rev. B 41, 11564 (1990)

    Article  ADS  Google Scholar 

  2. H. Lengfellner, G. Kremb, A. Schnellbögl, J. Betz, K.F. Renk, W. Prettl, Appl. Phys. Lett. 60, 501 (1992)

    Article  ADS  Google Scholar 

  3. L.R. Testartdi, Appl. Phys. Lett. 64, 2347 (1994)

    Article  ADS  Google Scholar 

  4. K. Takahashi, T. Kanno, A. Sakai, H. Adachi, Y. Yamada, Appl. Phys. Lett. 100, 181907 (2012)

    Article  ADS  Google Scholar 

  5. P.X. Zhang, W.K. Lee, G.Y. Zhang, Appl. Phys. Lett. 81, 4026 (2002)

    Article  ADS  Google Scholar 

  6. P.X. Zhang, U. Sticher, B. Leibold, H.-U. Habermeier, Phys. C 282–287(4), 2551 (1997)

    Article  Google Scholar 

  7. K. Takahashi, A. Sakai, T. Kanno, H. Adachi, Appl. Phys. Lett. 95, 051913 (2009)

    Article  ADS  Google Scholar 

  8. P.X. Zhang, C. Wang, G.Y. Zhang, L. Yu, W.K. Lee, H.-U. Habermeier, Opt. Laser Technol. 36, 341 (2004)

    Article  ADS  MATH  Google Scholar 

  9. Th Zahner, R. Stierstorfer, S. Reindl, T. Schauer, A. Penzkofer, H. Lengfellner, Phys. C 313(1–2), 37 (1999)

    Article  ADS  Google Scholar 

  10. Y. Zhang, R. Tao, W. Dong, Z. Deng, X. Fang, Opt. Laser Technol. 41, 968 (2009)

    Article  ADS  Google Scholar 

  11. P.X. Zhang, H.-U. Habermeier, J. Nanomater. 2008, 329601 (2008)

    Google Scholar 

  12. Th Zahner, R. Schreiner, R. Stierstorfer, O. Kus, S.T. Li, R. Roessler, J.D. Pedarunig, D. Bäuerle, H. Lengfellner, Europhys. Lett. 40, 673 (1997)

    Article  ADS  Google Scholar 

  13. G.W. Yan, L. Yu, Y. Wang, H. Zhang, P.X. Zhang, H.-U. Habermeier, J. Appl. Phys. 110, 103102 (2011)

    Article  ADS  Google Scholar 

  14. F. Xiong, H. Zhang, H.S. Li, P.X. Zhang, Z.M. Jiang, Acta Phys. Sin. 57, 5237 (2008)

    Google Scholar 

  15. F. Xiong, H. Zhang, Z.M. Jiang, P.X. Zhang, J. Appl. Phys. 104, 053118 (2008)

    Article  ADS  Google Scholar 

  16. Y. Maeno, K. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, F. Lichtenberg, Nature 372, 532 (1994)

    Article  ADS  Google Scholar 

  17. H.-U. Habermeier, X.H. Li, P.X. Zhang, B. Leibold, Solid State Commun. 110, 473 (1999)

    Article  ADS  Google Scholar 

  18. M. Sasaki, G.R. Wu, W.X. Gao, H. Negishi, M. Inoue, G.C. Xiong, Phys. Rev. B 59, 12425 (1999)

    Article  ADS  Google Scholar 

  19. K. Takahashi, T. Kanno, A. Sakai, H. Adachi, Y. Yamada, Phys. Rev. B 83, 115107 (2011)

    Article  ADS  Google Scholar 

  20. H. Takagi, S. Uchida, Y. Tokura, Phys. Rev. Lett. 62, 1197 (1989)

    Article  ADS  Google Scholar 

  21. N. Mori, T. Kameyama, H. Enomoto, H. Ozaki, Y. Takano, K. Sekizawa, J. Alloys Compd. 408–412, 1222 (2006)

    Article  Google Scholar 

  22. K.L. Tate, R.D. Johnson, C.L. Chang, E.F. Hilinski, S.C. Foster, J. Appl. Phys. 67, 4375 (1990)

    Article  ADS  Google Scholar 

  23. S. Wang, J. Cheng, X. Zhao, S. Zhao, L. He, M. Chen, W. Yu, J. Wang, G. Fu, Appl. Surf. Sci. 257, 157 (2010)

    Article  ADS  Google Scholar 

  24. G.Y. Zhang, P.X. Zhang, H.R. Zheng, X.Y. Zhang, D.L. Gao, H. Zhang, L. Pi, W.K. Lee, Opt. Laser Technol. 40, 844 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11464049) and the Key Programs of the Scientific Research Foundation of the Education Bureau of Yunnan Province (Grant No. 2014Z007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, F., Zhang, H., Yang, S. et al. Doping dependence of laser-induced transverse thermoelectric voltages in the perovskite Nd2−x Ce x CuO4 thin films. Appl. Phys. A 120, 717–723 (2015). https://doi.org/10.1007/s00339-015-9246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9246-5

Keywords

Navigation