Skip to main content
Log in

Efficient exfoliation N-doped graphene from N-containing bamboo-like carbon nanotubes for anode materials of Li-ion battery and Na-ion battery

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanosize N-doped graphene is prepared from N-containing carbon nanotubes (CNTs) by chemical exfoliation. The CNTs adopted for graphene are characterized by a discontinuous wall that consists of nanosize graphite layers, exhibiting a bamboo-like appearance. Take advantage of this characterization, the most time-consuming process of chemical oxidation that involves intercalation in graphene from CNT has been markedly reduced. The reduction in processing time is attributed to the diffusion distance of chemical oxidation intercalation into nanosize graphite composed of a bamboo-like carbon nanotube (BCNT) wall being far less than that of conventional chemical exfoliation into microsize graphite. The as-prepared nanosize N-doped graphene from BCNTs has shown an excellent electrochemical performance for Li-ion battery and Na-ion battery anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.-L. Tian, X.-Y. Wei, Q.-C. Zhuang, C.-H. Jiang, C. Wu, G.-Y. Ma et al., Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage. Nanoscale (2014)

  2. T. Hu, X. Sun, H. Sun, G. Xin, D. Shao, C. Liu et al., Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability. Phys. Chem. Chem. Phys. 16(3), 1060–1066 (2014)

    Article  Google Scholar 

  3. A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11), 6337–6342 (2010)

    Article  Google Scholar 

  4. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang et al., Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11(6), 2472–2477 (2011)

    Article  ADS  Google Scholar 

  5. Y. Lu, Y. Huang, M. Zhang, Y. Chen, Nitrogen-doped graphene materials for supercapacitor applications. J. Nanosci. Nanotechnol. 14(2), 1134–1144 (2014)

    Article  Google Scholar 

  6. D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun et al., High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 4(3), 760–764 (2011)

    Article  Google Scholar 

  7. L. Qu, Y. Liu, J.-B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321–1326 (2010)

    Article  Google Scholar 

  8. Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang et al., Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20(35), 7491–7496 (2010)

    Article  Google Scholar 

  9. L. Zhang, Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115(22), 11170–11176 (2011)

    Article  Google Scholar 

  10. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  11. W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)

    Article  Google Scholar 

  12. W. Du, X. Jiang, L. Zhu, From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J. Mater. Chem. A 1(36), 10592–10606 (2013)

    Article  Google Scholar 

  13. W.W. Liu, J.N. Wang, Direct exfoliation of graphene in organic solvents with addition of NaOH. Chem. Commun. 47(24), 6888–6890 (2011)

    Article  Google Scholar 

  14. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)

    Article  ADS  Google Scholar 

  15. W. Yang, G. Chen, Z. Shi, C.-C. Liu, L. Zhang, G. Xie et al., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12(9), 792–797 (2013)

    Article  ADS  Google Scholar 

  16. P.W. Sutter, J.-I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium. Nat. Mater. 7(5), 406–411 (2008)

    Article  ADS  Google Scholar 

  17. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313(5789), 951–954 (2006)

    Article  ADS  Google Scholar 

  18. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud et al., Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191–1196 (2006)

    Article  ADS  Google Scholar 

  19. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009)

    Article  ADS  Google Scholar 

  20. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877–880 (2009)

    Article  ADS  Google Scholar 

  21. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)

    Article  ADS  Google Scholar 

  22. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)

    Article  ADS  Google Scholar 

  23. Q. Yu, L.A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10(6), 443–449 (2011)

    Article  ADS  Google Scholar 

  24. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013)

    Article  Google Scholar 

  25. X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang et al., N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928), 768–771 (2009)

    Article  ADS  Google Scholar 

  26. D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.-H. Yoon, Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26(20), 16096–16102 (2010)

    Article  Google Scholar 

  27. Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6), 4350–4358 (2011)

    Article  Google Scholar 

  28. N.R. Jafri, N. Rajalakshmi, S. Ramaprabhu, Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 20(34), 7114–7117 (2010)

    Article  Google Scholar 

  29. Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4), 1790–1798 (2010)

    Article  Google Scholar 

  30. Y.-C. Lin, C.-Y. Lin, P.-W. Chiu, Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 96(13), 133110–133113 (2010)

    Article  ADS  Google Scholar 

  31. B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong, Controllable N-doping of graphene. Nano Lett. 10(12), 4975–4980 (2010)

    Article  ADS  Google Scholar 

  32. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009)

    Article  ADS  Google Scholar 

  33. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev et al., Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    Article  Google Scholar 

  34. Y. Tang, B.L. Allen, D.R. Kauffman, A. Star, Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J. Am. Chem. Soc. 131(37), 13200–13201 (2009)

    Article  Google Scholar 

  35. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu et al., Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)

    Article  Google Scholar 

  36. Y. Ito, C. Christodoulou, M.V. Nardi, N. Koch, H. Sachdev, K. Müllen, Chemical vapor deposition of n-doped graphene and carbon films: the role of precursors and gas phase. ACS Nano 8(4), 3337–3346 (2014)

    Article  Google Scholar 

  37. Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald et al., Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 21(22), 8038–8044 (2011)

    Article  Google Scholar 

  38. J. Casanovas, J.M. Ricart, J. Rubio, F. Illas, J.M. Jiménez-Mateos, Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials. J. Am. Chem. Soc. 118(34), 8071–8076 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by The National Basic Research Program of China (Grant Nos. 51272176 and 51472180), Key Project of Tianjin Municipal Natural Science Foundation of China (13JCZDJC33900 and 14JCZDJC32200), National Basic Research Program of China (973 Program, 2012CB933600), Tianjin City High School Science and Technology Fund Planning Project (20140310), and the Youth Foundation of Tianjin Normal University (5RL128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, JM., Dong, L., Han, Y. et al. Efficient exfoliation N-doped graphene from N-containing bamboo-like carbon nanotubes for anode materials of Li-ion battery and Na-ion battery. Appl. Phys. A 120, 471–478 (2015). https://doi.org/10.1007/s00339-015-9245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9245-6

Keywords

Navigation