Skip to main content
Log in

Optical and low-temperature thermoelectric properties of phase-pure p-type InSe thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polycrystalline phase-pure p-type InSe thin films were deposited on glass substrates by reactive evaporation at an optimized substrate temperature of 473 ± 5 K and pressure of 10−5 mbar. The as-prepared InSe thin films were analyzed by X-ray diffractometry, energy-dispersive X-ray spectroscopy, atomic force microscopy, UV–Vis–NIR spectroscopy, electrical conductivity and Hall measurements. The lattice parameters, particle size, dislocation density, number of crystallites per unit area and the lattice strain of the prepared InSe thin films were calculated and found as a = 4.00 ± 0.002 Å and c = 16.68 ± 0.002 Å, 48 ± 2 nm, 4.34 × 1010 lines cm−2, 15.37 × 1010 cm−2 and 1.8 × 10−3, respectively. The as-deposited InSe thin films showed a direct allowed transition with an optical band gap of 1.35 ± 0.02 eV and high absorption coefficient of about 105 cm−1. The oscillator energy (E o) and dispersion energy (E d) were calculated using the single-oscillator Wemple and DiDomenico model. The p-type conductivity and photosensitivity of the as-prepared InSe thin films confirmed their potential application in photovoltaic devices. The mean free path, relaxation time, density of states, Fermi energy and effective mass of holes in the film were determined by correlating the results of thermopower and Hall measurements. The sudden and sharp increase in thermopower from 80 to 37 K was explained as due to the effect of phonon drag on charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Gordillo, C. Calderon, Sol. Energy Mater. Sol. Cells 77, 163 (2003)

    Article  Google Scholar 

  2. M.A. Kenawy, A.F.E. Shazly, M.A. Afifi, H.A. Zayed, H.A.E. Zahid, Thin Solid Films 200, 203 (1991)

    Article  ADS  Google Scholar 

  3. V.M. Koshkin, L.P. Galchinetskii, V.N. Kulik, B.I. Minkov, U.A. Ulmanis, Solid State Commun. 13, 1 (1973)

    Article  ADS  Google Scholar 

  4. P. Matheswaran, R. Sathyamoorthy, K. Asokan, Electron. Mater. Lett. 8, 621 (2012)

    Article  ADS  Google Scholar 

  5. M. Balkanski, P.G.D. Costa, R.F. Wallis, Phys. Status Solid. B 194, 175 (1996)

    Article  ADS  Google Scholar 

  6. V.B. Boledzyuk, Z.D. Kovalyuk, M.N. Pyrlya, Inorg. Mater. 45, 1222 (2009)

    Article  Google Scholar 

  7. T. Matsushita, T.T. Nang, M. Okuda, A. Suzuki, S. Yokota, Jpn. J. Appl. Phys. 15, 901 (1976)

    Article  ADS  Google Scholar 

  8. B. Ullrich, Mater. Sci. Eng., B 56, 69 (1998)

    Article  Google Scholar 

  9. S. Marsillac, J.C. Bernede, Thin Solid Films 315, 5 (1998)

    Article  ADS  Google Scholar 

  10. Z.D. Kovalyuk, V.N. Katerynchuk, O.A. Politanska, O.N. Sydor, V.V. Khomyak, Tech. Phys. Lett. 31, 359 (2005)

    Article  ADS  Google Scholar 

  11. H. Okamoto, J. Phase Equilib. Diff. 25, 201 (2004)

    Article  Google Scholar 

  12. B. Kavitha, M. Dhanam, J. Ovonic Res. 6, 75 (2010)

    Google Scholar 

  13. M. Persin, A. Persin, B. Celustka, B. Etlinger, Thin Solid Films 11, 153 (1972)

    Article  ADS  Google Scholar 

  14. S.S. Lee, K.W. Seo, I.W. Shim, Bull. Korean Chem. Soc. 27, 147 (2006)

    Article  Google Scholar 

  15. H. Bouzouita, N. Bouguila, S. Duchemin, S. Fiechter, A. Dhouib, Renew Energ. 25, 131 (2002)

    Article  Google Scholar 

  16. M. Hrdlicka, J. Prikryl, M. Pavlista, L. Benes, M. Vlcek, M. Frumar, J. Phys. Chem. Solids 68, 846 (2007)

    Article  ADS  Google Scholar 

  17. K.G. Gunther, in The use of thin films in physical investigations, ed. by J.C. Anderson (Academic press, London, 1966), p. 213

    Google Scholar 

  18. K.S. Urmila, T.A. Namitha, R.R. Philip, V. Ganesan, G.S. Okram, B. Pradeep, Phys. Status Solid. B 251, 689 (2014)

    Article  ADS  Google Scholar 

  19. A. Soni, G.S. Okram, Rev. Sci. Instrum. 79, 1251031 (2008)

    Article  Google Scholar 

  20. B.D. Cullity, in Elements of X-ray diffraction, ed. by M. Cohen (Addison-Wesley, Philippines, 1978), p. 81

    Google Scholar 

  21. R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983)

    Article  ADS  Google Scholar 

  22. A. Mandelis, in Handbook of optical constants of solids, ed. by E.D. Palik (Academic Press, USA, 1998), p. 59

    Google Scholar 

  23. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  24. T.S. Moss, G.J. Burrell, B. Ellis, Semiconductor opto-electronics, 1st edn. (Butterworths, London, 1973), pp. 23–47

    Book  Google Scholar 

  25. K. Senthil, D. Mangalaraj, S.K. Narayandass, S. Adachi, Mater. Sci. Eng., B 78, 53 (2000)

    Article  Google Scholar 

  26. S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)

    Article  ADS  Google Scholar 

  27. A. Larbi, H. Dahman, M. Kanzari, Vacuum 110, 34 (2014)

    Article  ADS  Google Scholar 

  28. E.S.M. Farag, M.M. Sallam, Egypt. J. Solids. 30, 1 (2007)

    Google Scholar 

  29. R.K. Murali, P. Thirumoorthy, ECS Trans. 28, 67 (2010)

    Article  Google Scholar 

  30. H.B. Kwok, R.H. Bube, J. Appl. Phys. 44, 138 (1973)

    Article  ADS  Google Scholar 

  31. R.A. Smith, Semiconductors, 1st edn. (Cambridge University Press, Cambridge, 1959), pp. 291–371

    MATH  Google Scholar 

  32. N.D. Gupta, A.D. Gupta, in Semiconductor devices: modelling and technology, ed. by A.K. Ghosh (Prentice Hall of India, New Delhi, 2004), p. 1

    Google Scholar 

  33. C. Herring, Phys. Rev. 96, 1163 (1954)

    Article  ADS  Google Scholar 

  34. O. Madelung, Semiconductors: Data Handbook, 3rd edn. (Springer, Berlin, 2004), pp. 515–552

    Book  Google Scholar 

Download references

Acknowledgments

K. S. Urmila would like to thank University Grants Commission (UGC), Government of India, for financial assistance in the form of Research Fellowship in Science for Meritorious Students (RFSMS). R. R. Philip acknowledges Department of Science and Technology (DST), Government of India, for funding a major project. Thanks are also due to Dr. V. Ganesan and Dr. G. S. Okram of UGC-DAE Consortium for Scientific Research, Indore, India, for providing AFM and TEP facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Urmila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urmila, K.S., Namitha, T.A., Philip, R.R. et al. Optical and low-temperature thermoelectric properties of phase-pure p-type InSe thin films. Appl. Phys. A 120, 675–681 (2015). https://doi.org/10.1007/s00339-015-9237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9237-6

Keywords

Navigation