Skip to main content
Log in

Fabrication of three-dimensional micro-Rogowski coil based on femtosecond laser micromachining

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper reports an arbitrary-shape designable fabrication of three-dimensional (3D) micro-Rogowski coil inside silica glass by means of femtosecond laser wet etches and metal microsolidics. The dimension of the fabricated micro-Rogowski coil is 800 μm, and the aspect ratio of the structure reaches about 300. The alloys of Bi/In/Sn/Pb with high melting point were used as the conductive metal. The inductance of micro-Rogowski coil is 113.58 nH at 10 kHz and 14.11 nH at 120 MHz, respectively. The embedded 3D micro-Rogowski coils can be easily integrated with other microelectrical, mechanical and optical systems, which could be widely applied in MEMS, sensors and lab-on-chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Barbic, J.J. Mock, A.P. Gray, S. Schultz, Appl. Phys. Lett. 79, 1399–1401 (2001)

    Article  ADS  Google Scholar 

  2. H. Ryan, S.H. Song, A. Zaß, J. Korvink, M. Utz, Anal. Chem. 84, 3696–3702 (2012)

    Article  Google Scholar 

  3. D.H. Kim, Y.S. Kim, J. Wu, Z.J. Liu, J.Z. Song, H.S. Kim, Y.G.Y. Huang, K.C. Hwang, J.A. Rogers, Adv. Mater. 21, 3703–3708 (2009)

    Article  Google Scholar 

  4. V. Badilita, B. Fassbender, K. Kratt, A. Wong, C. Bonhomme, D. Sakellariou, J.G. Korvink, U. Wallrabe, Plos One 7, e42848 (2012)

    Article  ADS  Google Scholar 

  5. T.F. Kong, W.K. Peng, T.D. Luong, N.T. Nguyen, J. Han, Lab Chip 12, 287–294 (2012)

    Article  Google Scholar 

  6. A. Salehizadeh, A. Sadighzadeh, M.S. Movahhed, A.A. Zaeem, A. Heidarnia, R. Sabri, M.B. Mahmoudi, H. Rahimi, S. Rahimi, E. Johari, M. Torabi, V. Damideh, J. Fusion Energy 32, 293–297 (2013)

    Article  ADS  Google Scholar 

  7. E. Hemmati, S.M. Shahrtash, IEEE Trans. Instrum. Meas. 62, 71–82 (2013)

    Article  Google Scholar 

  8. K. Draxler, R. Styblikova, J. Hlavacek, R. Prochazka, IEEE Trans. Instrum. Meas. 60, 2434–2438 (2011)

    Article  Google Scholar 

  9. S. Tumanski, Meas. Sci. Technol. 18, R31–R46 (2007)

    Article  ADS  Google Scholar 

  10. B. Moffat, M. Desmulliez, K. Brown, C. Desai, D. Flynn, A. Sutherland, in Electronics system-integration technology conference, 2008, IEEE, vol. 299, pp. 299–304 (2008)

  11. C. Leia, Y. Zhoua, X.-Y. Gaoa, W. Dinga, Y. Caoa, Z.-M. Zhoua, H. Choib, Microelectron. J. 37, 1347–1351 (2006)

    Article  Google Scholar 

  12. K. Ehrmann, N. Saillen, F. Vincent, M. Stettler, M. Jordan, F.M. Wurm, P.A. Besse, R. Popovic, Lab Chip 7, 373–380 (2007)

    Article  Google Scholar 

  13. V. Demas, A. Bernhardt, V. Malba, K.L. Adams, L. Evans, C. Harvey, R.S. Maxwell, J.L. Herberg, J. Magn. Reson. 200, 56–63 (2009)

    Article  ADS  MATH  Google Scholar 

  14. V. Badilita, K. Kratt, N. Baxan, M. Mohmmadzadeh, T. Burger, H. Weber, D. Elverfeldt, J. Hennig, J.G. Korvink, U. Wallrabe, Lab Chip 10, 1387–1390 (2010)

    Article  Google Scholar 

  15. V. Seidemann, S. Buettgenbach, Microelectron. MEMS Technol. (Int. Soc. Opt. Photonics) 4407, 304–309 (2001)

    Article  Google Scholar 

  16. K. Kratt, V. Badilita, T. Burger, J.G. Korvink, U. Wallrabe, J. Micromech. Microeng. 20, 015021 (2010)

    Article  ADS  Google Scholar 

  17. S. Waselikowski, K. Kratt, V. Badilita, U. Wallrabe, J.G. Korvink, M. Walther, Appl. Phys. Lett. 97, 261105 (2010)

    Article  ADS  Google Scholar 

  18. B.B. Xu, H. Xia, L.G. Niu, Y.L. Zhang, K. Sun, Q.D. Chen, Y. Xu, Z.Q. Lv, Z.H. Li, H. Misawa, H.B. Sun, Small 6, 1762–1766 (2010)

    Article  Google Scholar 

  19. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Opt. Lett. 26, 277–279 (2001)

    Article  ADS  Google Scholar 

  20. K.C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, R. Osellame, Opt. Express 17, 8685–8695 (2009)

    Article  ADS  Google Scholar 

  21. S. He, F. Chen, K. Liu, Q. Yang, H. Liu, H. Bian, X. Meng, C. Shan, J. Si, Y. Zhao, Opt. Lett. 37, 3825–3827 (2012)

    Article  ADS  Google Scholar 

  22. F. Chen, C. Shan, K. Liu, Q. Yang, X. Meng, S. He, J. Si, F. Yun, X. Hou, Opt. Lett. 38, 2911–2914 (2013)

    Article  ADS  Google Scholar 

  23. S. He, F. Chen, Q. Yang, K. Liu, C. Shan, H. Bian, H. Liu, X. Meng, J. Si, Y. Zhao, J. Micromech. Microeng. 22, 105017 (2012)

    Article  ADS  MATH  Google Scholar 

  24. R.R. Gattass, E. Mazur, Nat. Photonics 2, 219–225 (2008)

    Article  ADS  Google Scholar 

  25. A.C. Siegel, D.A. Bruzewicz, D.B. Weibel, G.M. Whitesides, Adv. Mater. 19, 727–733 (2007)

    Article  Google Scholar 

  26. K. Liu, Y. Zhao, Q. Yang, F. Chen, S. He, X. Fan, L. Li, C. Shan, H. Bian, in NEMS 2013 8th IEEE International Conference, pp. 677–680

Download references

Acknowledgments

This work is supported by the National Science Foundation of China under the Grant Nos. 51335008, 61275008 and 61176113, the Special-funded program on National Key Scientific Instruments and Equipment Development of China under the Grant No. 2012YQ12004706.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Yang, Q., Chen, F. et al. Fabrication of three-dimensional micro-Rogowski coil based on femtosecond laser micromachining. Appl. Phys. A 120, 669–674 (2015). https://doi.org/10.1007/s00339-015-9236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9236-7

Keywords

Navigation