Skip to main content
Log in

Effect of edge chemistry doping on the transport and optical properties for asymmetric armchair-edge graphene nanoribbons under a uniaxial strain

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of edge n-type nitrogen (N) and p-type oxygen (O) doping on the transport and optical properties for asymmetric 6- and 8-armchair-edge graphene nanoribbons (AGNRs) under a uniaxial strain has been demonstrated in the method of the first-principles density functional theory combined with nonequilibrium Green’s function. The transmission spectra and current–voltage (I–V) curves of the semiconducting 6- and metallic 8-AGNRs have been found to be qualitatively unchanged as the uniaxial strain along the armchair edge (Ac-strain), while the quantitative variations come from the mutual actions of the strain and edge doping. However, the observed semiconductor–metal transition and metal–semiconductor transition in the transport properties for 6- and 8-AGNRs should be mainly from the resonance scattering of the doping edges when the external strain is applied along the zigzag edge (Zz-strain). The distinct variation trends of the system transport properties are well confirmed from the optical absorption spectra. It is believed that the obtained results are of importance in exploiting chemistry at the reactive edges of the asymmetric AGNRs and strain engineering of the nanoelectronic/optoelectronic devices based on AGNRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  2. D. Basu, M.J. Gilbert, L.F. Register, S.K. Banerjee, Appl. Phys. Lett. 92, 042114 (2008)

    Article  ADS  Google Scholar 

  3. K. Sasaki, K. Kato, Y. Tokura, K. Oguri, T. Sogawa, Phys. Rev. B 84, 085458 (2011)

    Article  ADS  Google Scholar 

  4. G. Kondayya, A. Shukla, Phys. B 406, 3538 (2011)

    Article  ADS  Google Scholar 

  5. V. Barone, O. Hod, G.E. Scuseria, Nano Lett. 6, 2748 (2006)

    Article  ADS  Google Scholar 

  6. L. Yang, M.L. Cohen, S.G. Louie, Nano Lett. 7, 3112 (2007)

    Article  ADS  Google Scholar 

  7. W.H. Liao, G.H. Zhou, F. Xi, J. Appl. Phys. 104, 126105 (2008)

    Article  ADS  Google Scholar 

  8. H.C. Chung, M.H. Lee, C.P. Chang, M.F. Lin, Opt. Express 19, 23350 (2011)

    Article  ADS  Google Scholar 

  9. M.Y. Han, B. Özyilmaz, Y.B. Zhang, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  10. P. Shemella, Y.M. Zhang, M. Mailman, P.M. Ajayan, S.K. Nayak, Appl. Phys. Lett. 91, 042101 (2007)

    Article  ADS  Google Scholar 

  11. Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  12. L. Yang, C.H. Park, Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 99, 186801 (2007)

    Article  ADS  Google Scholar 

  13. Z.Y. Li, H.Y. Qian, J. Wu, B.-L. Gu, W.H. Duan, Phys. Rev. Lett. 100, 206802 (2008)

    Article  ADS  Google Scholar 

  14. Y.W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006)

    Article  ADS  Google Scholar 

  15. Y. Pan, H.G. Zhang, D.X. Shi, J.T. Sun, S.X. Du, F. Liu, H.-J. Gao, Adv. Mater. 21, 2777 (2009)

    Article  Google Scholar 

  16. B. Huang, Q.M. Yan, G. Zhou, J. Wu, B.-L. Gu, W.H. Duan, F. Liu, Appl. Phys. Lett. 91, 253122 (2007)

    Article  ADS  Google Scholar 

  17. Z.F. Wang, Q.X. Li, Q.W. Shi, X.P. Wang, J.L. Yang, J.G. Hou, J. Chen, Appl. Phys. Lett. 92, 133114 (2008)

    Article  ADS  Google Scholar 

  18. G. Lee, K.J. Cho, Phys. Rev. B 79, 165440 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  19. Y.J. Ouyang, S. Sanvito, J. Guo, Surf. Sci. 605, 1643 (2010)

    Article  ADS  Google Scholar 

  20. Q.M. Yan, B. Huang, J. Yu, F.W. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, W.H. Duan, Nano Lett. 7, 1469 (2007)

    Article  ADS  Google Scholar 

  21. G. Gui, J. Li, J.X. Zhong, Phys. Rev. B 78, 075435 (2008)

    Article  ADS  Google Scholar 

  22. S.-M. Choi, S.-H. Jhi, Y.-W. Son, Phys. Rev. B 81, 081407(R) (2010)

    Article  ADS  Google Scholar 

  23. P. Shemella, S.K. Nayak, Appl. Phys. Lett. 94, 032101 (2009)

    Article  ADS  Google Scholar 

  24. V.M. Pereira, A.H. Castro Neto, N.M.R. Peres, Phys. Rev. B 80, 045401 (2009)

    Article  ADS  Google Scholar 

  25. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Phys. Rev. B 79, 205433 (2009)

    Article  ADS  Google Scholar 

  26. M.Y. Huang, H.G. Yan, T.F. Heinz, J. Hone, Nano Lett. 10, 4074 (2010)

    Article  ADS  Google Scholar 

  27. S.Y. Zhou, G.H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.H. Lee, F. Guinea, A.H. Castro Neto, A. Lanzara, Nat. Mater. 6, 770 (2007)

    Article  ADS  Google Scholar 

  28. H. Zhao, K. Min, N.R. Aluru, Nano Lett. 9, 3012 (2009)

    Article  ADS  Google Scholar 

  29. L. Sun, Q.X. Li, H. Ren, H.B. Su, Q.W. Shi, J.L. Yang, J. Chem. Phys. 129, 074704 (2008)

    Article  ADS  Google Scholar 

  30. M. Topsakal, V.M.K. Bagci, S. Ciraci, Phys. Rev. B 81, 205437 (2010)

    Article  ADS  Google Scholar 

  31. O. Hod, G.E. Scuseria, Nano Lett. 9, 2619 (2009)

    Article  ADS  Google Scholar 

  32. V.M. Pereira, Phys. Rev. Lett. 103, 046801 (2009)

    Article  ADS  Google Scholar 

  33. C.P. Chang, B.R. Wu, R.B. Chen, M.F. Lin, J. Appl. Phys. 101, 063506 (2007)

    Article  ADS  Google Scholar 

  34. W.H. Liao, B.H. Zhou, H.Y. Wang, G.H. Zhou, Eur. Phys. J. B 76, 463 (2010)

    Article  ADS  Google Scholar 

  35. M. Poetschke, C.G. Rocha, L.E.F. Foa Torres, S. Roche, G. Cuniberti, Phy. Rev. B 81, 193404 (2010)

    Article  ADS  Google Scholar 

  36. W.H. Liao, H.P. Zhao, G. Ouyang, K.-Q. Chen, G.H. Zhou, Appl. Phys. Lett. 100, 153112 (2012)

    Article  ADS  Google Scholar 

  37. A. Copple, N. Ralston, X.H. Peng, Appl. Phys. Lett. 100, 193108 (2012)

    Article  ADS  Google Scholar 

  38. A. Bhattacharya, S. Bhattacharya, G.P. Das, Phys. Rev. B 84, 075454 (2011)

    Article  ADS  Google Scholar 

  39. X.H. Peng, S. Velasquez, Appl. Phys. Lett. 98, 023112 (2011)

    Article  ADS  Google Scholar 

  40. X.H. Peng, F. Tang, A. Copple, J. Phys. Condens. Matter 24, 075501 (2012)

    Article  ADS  Google Scholar 

  41. E.W.S. Caetano, V.N. Freire, S.G. dos Santos, E.L. Albuquerque, D.S. Galvão, F. Sato, Langmuir 25, 4751 (2009)

    Article  Google Scholar 

  42. W.-H. Zhu, G.-H. Ding, B. Dong, Appl. Phys. Lett. 100, 103101 (2012)

    Article  ADS  Google Scholar 

  43. W.-H. Zhu, G.-H. Ding, B. Dong, J. Appl. Phys. 113, 103510 (2013)

    Article  ADS  Google Scholar 

  44. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  45. C. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  46. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. B 77, 3865 (1996)

    ADS  Google Scholar 

  47. B. Hammer, L.B. Hansen, J.K. Norskov, Phys. Rev. B 59, 7413 (1999)

    Article  ADS  Google Scholar 

  48. B.D. Guo, Q. Liu, E.D. Chen, H.W. Zhu, L. Fang, J.R. Gong, Nano Lett. 10, 4975 (2010)

    Article  ADS  Google Scholar 

  49. Q. Lin, Y.-H. Chen, J.-B. Wu, Z.-M. Kong, Acta Phys. Sin. 60, 097103 (2011)

    Google Scholar 

  50. Y.L. Jia, Y. Gao, Phys. Status Solidi B 251, 1252 (2014)

    Article  ADS  Google Scholar 

  51. G.L. Yu, N. Chen, L. Chen, Y.Q. Xie, F.F. Wang, X. Ye, Phys. Status Solidi A 211, 952 (2014)

    Article  Google Scholar 

  52. L.-H. Qu, J.-M. Zhang, K.-W. Xu, Ji Vincent, Phys. E 56, 55 (2014)

    Article  Google Scholar 

  53. F.H. Qi, G.J. Jin, J. Appl. Phys. 114, 073509 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Xuexian Yang for insightful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11264013, 11264011 and 11447237), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 12JJ4003 and 2015JJ6094), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant Nos. 14B148 and 12C0311), the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, and the Research Program for employee of Jishou University (Grant No. jsdxkyzz201005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhu Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, W., Bao, H., Guo, J. et al. Effect of edge chemistry doping on the transport and optical properties for asymmetric armchair-edge graphene nanoribbons under a uniaxial strain. Appl. Phys. A 120, 657–662 (2015). https://doi.org/10.1007/s00339-015-9234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9234-9

Keywords

Navigation