Skip to main content
Log in

Silicon dopant passivation by nitrogen during molecular beam epitaxy of GaNAs

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have studied the Si doping efficiency in dilute nitride GaNAs by gas-source molecular beam epitaxy across a substrate temperature range from 460 to 570 °C. Particularly, for samples grown at ~480 °C, the doping efficiency changes drastically from 100 to almost 0 % as the N compositions varies from 0 to 3.1 %. By comparing experimental data to Monte Carlo simulation of N adatom surface diffusion during growth, the change in doping efficiency is believed to be due to passivation of Si dopants by N during epitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Weyers, M. Sato, H. Ando, Jpn. J. Appl. Phys. 31(7A), L853–L855 (1992)

    Article  ADS  Google Scholar 

  2. M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, Y. Yazawa, Jpn. J. Appl. Phys. 35(2B), 1273–1275 (1996)

    Article  ADS  Google Scholar 

  3. W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, Phys. Rev. Lett. 82(6), 1221–1224 (1999)

    Article  ADS  Google Scholar 

  4. M.A. Wistey, S.R. Bank, H.B. Yuen, H. Bae, J.S. Harris, J. Cryst. Growth 278(1–4), 229–233 (2005)

    Article  ADS  Google Scholar 

  5. H.P. Xin, R.J. Welty, C.W. Tu, Appl. Phys. Lett. 77(13), 1946–1948 (2000)

    Article  ADS  Google Scholar 

  6. J.E. Stehr, A. Dobrovolsky, S. Sukrittanon, Y. Kuang, C. Tu, W.M. Chen, I.A. Buyanova, Nano Lett. 15(1), 242–247 (2014)

    Article  ADS  Google Scholar 

  7. Y.J. Kuang, K. Takabayashi, S. Sukrittanon, J.L. Pan, I. Kamiya, C.W. Tu, Appl. Phys. Lett. 105(17), 173112 (2014)

    Article  ADS  Google Scholar 

  8. P. Pichanusakorn, Y.J. Kuang, C.J. Patel, C.W. Tu, P.R. Bandaru, Appl. Phys. Lett. 99(7), 072114 (2011)

    Article  ADS  Google Scholar 

  9. P. Pichanusakorn, Y.J. Kuang, C. Patel, C.W. Tu, P.R. Bandaru, Phys. Rev. B 86(8), 085314 (2012)

    Article  ADS  Google Scholar 

  10. E. Luna, M. Hopkinson, J.M. Ulloa, A. Guzman, E. Munoz, Appl. Phys. Lett. 83(15), 3111–3113 (2003)

    Article  ADS  Google Scholar 

  11. N. López, L.A. Reichertz, K.M. Yu, K. Campman, W. Walukiewicz, Phys. Rev. Lett. 106(2), 028701 (2011)

    Article  ADS  Google Scholar 

  12. Y.J. Kuang, K.M. Yu, R. Kudrawiec, A.V. Luce, M. Ting, W. Walukiewicz, C.W. Tu, Appl. Phys. Lett. 102(11), 112105 (2013)

    Article  ADS  Google Scholar 

  13. R. Kudrawiec, A.V. Luce, M. Gladysiewicz, M. Ting, Y.J. Kuang, C.W. Tu, O.D. Dubon, K.M. Yu, W. Walukiewicz, Phys. Rev. Appl. 1(3), 034007 (2014)

    Article  ADS  Google Scholar 

  14. Y.J. Kuang, S. Sukrittanon, H. Li, C.W. Tu, Appl. Phys. Lett. 100(5), 053108 (2012)

    Article  ADS  Google Scholar 

  15. S. Sukrittanon, Y. Kuang, C.W. Tu, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Nanometer Struct. 31(3), 03C110 (2013)

    Google Scholar 

  16. A. Dobrovolsky, J.E. Stehr, S.L. Chen, Y.J. Kuang, S. Sukrittanon, C.W. Tu, W.M. Chen, I.A. Buyanova, Appl. Phys. Lett. 101(16), 163106 (2012)

    Article  ADS  Google Scholar 

  17. S. Sukrittanon, Y.J. Kuang, A. Dobrovolsky, W.-M. Kang, J.-S. Jang, B.-J. Kim, W.M. Chen, I.A. Buyanova, C.W. Tu, Appl. Phys. Lett. 105(7), 07210 (2014)

    Article  Google Scholar 

  18. A. Dobrovolsky, S. Sukrittanon, Y. Kuang, C.W. Tu, W.M. Chen, I.A. Buyanova, Small 10(21), 4403 (2014)

    Google Scholar 

  19. S. Filippov, S. Sukrittanon, Y. Kuang, C. Tu, P.O.Å. Persson, W.M. Chen, I.A. Buyanova, Nano Lett. 14(9), 5264–5269 (2014)

    Article  Google Scholar 

  20. J.J. Gersten, F.W. Smith, The physics and chemistry of materials (Wiley, New York, 2001)

    Google Scholar 

  21. S. Fahy, E.P.O. Reilly, Appl. Phys. Lett. 83, 3731 (2003)

  22. K.M. Yu, W. Walukiewicz, J. Wu, D.E. Mars, D.R. Chamberlin, M.A. Scarpulla, O.D. Dubon, J.F. Geisz, Nat. Mater. 1(3), 185–189 (2002)

    Article  ADS  Google Scholar 

  23. J. Li, P. Carrier, S.-H. Wei, S.-S. Li, J.-B. Xia, Phys. Rev. Lett. 96(3), 035505 (2006)

    Article  ADS  Google Scholar 

  24. A. Janotti, P. Reunchan, S. Limpijumnong, C.G. Van de Walle, Phys. Rev. Lett. 100(4), 045505 (2008)

    Article  ADS  Google Scholar 

  25. Y.G. Chai, C.E.C. Wood, R. Chow, Appl. Phys. Lett. 39(10), 800–803 (1981)

    Article  ADS  Google Scholar 

  26. Y. Jin, Y. He, H. Cheng, R.M. Jock, T. Dannecker, M. Reason, A.M. Mintairov, C. Kurdak, J.L. Merz, R.S. Goldman, Appl. Phys. Lett. 95(9), 092109 (2009)

    Article  ADS  Google Scholar 

  27. F. Ishikawa, G. Mussler, K.J. Friedland, H. Kostial, K. Hagenstein, L. Daweritz, K.H. Ploog, Appl. Phys. Lett. 87(26), 262112–262113 (2005)

    Article  ADS  Google Scholar 

  28. Y.-J. Kuang, S.-W. Chen, H. Li, S.K. Sinha, C.W. Tu, J. Vac. Sci. Technol. B Microelectron. Nanometer. Struct. 30(2), 02B121 (2012)

    Article  Google Scholar 

  29. W.G. Bi, F. Deng, S.S. Lau, C.W. Tu, J. Vac. Sci. Technol. B 13(2), 754–757 (1995)

    Article  Google Scholar 

  30. M. Heiblum, W.I. Wang, L.E. Osterling, V. Deline, J. Appl. Phys. 54(11), 6751–6753 (1983)

    Article  ADS  Google Scholar 

  31. R.J. Malik, J. Nagle, M. Micovic, T. Harris, R.W. Ryan, L.C. Hopkins, J. Vac. Sci. Technol. B 10(2), 850–852 (1992)

    Article  Google Scholar 

  32. M. Ogawa, T. Baba, Jpn J Appl Phys. 2 24(8), L572–L574 (1985)

    Article  Google Scholar 

  33. G. Bosker, N.A. Stolwijk, J.V. Thordson, U. Sodervall, T.G. Andersson, Phys. Rev. Lett. 81(16), 3443–3446 (1998)

    Article  ADS  Google Scholar 

  34. E.F. Schubert, Doping in III-V semiconductors (Cambridge University Press, Cambridge England, New York, 1993)

    Book  Google Scholar 

  35. Fisher R, Hopkins CG, Evans CA Jr., Drummond TJ, Lyons WG, Klem J, Colvard C, Morkoç H, presented at the GaAs and Related Compound, In: Institute Physics Conference, Serial No. 65, (1983) (unpublished)

  36. W.M. McGee, P.A. Bone, R.S. Williams, T.S. Jones, Appl Phys Lett 87(18), 181905 (2005)

    Article  ADS  Google Scholar 

  37. M. Reason, N.G. Rudawski, H.A. McKay, X. Weng, W. Ye, R.S. Goldman, J Appl Phys 101(8), 83520 (2007)

    Article  Google Scholar 

  38. J.J.S. Harris, H.B. Yuen, S.R. Bank, M.A. Wistey, V. Lordi, T. Gugov, H. Bae, L. L. Goddard, in Dilute Nitride Semiconductors, ed. by M. Henini (Elsevier, Oxford, 2005), pp. 1–92

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation under Grant No. DMR-0907652 and DMR-1106369.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Kuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, Y.J., Tu, C.W. Silicon dopant passivation by nitrogen during molecular beam epitaxy of GaNAs. Appl. Phys. A 120, 635–639 (2015). https://doi.org/10.1007/s00339-015-9228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9228-7

Keywords

Navigation