Skip to main content
Log in

Effect of vanadium ion implantation on the crystallization kinetics and phase transformation of electrospun TiO2 nanofibers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The influence of V ion implantation on the thermal response of electrospun amorphous TiO2 nanofibers was studied with reference to structural phase transformation behavior, using in situ synchrotron radiation diffraction (SRD) measurements from room temperature to 1000 °C. Analysis of the SRD data provided activation energies for amorphous-to-crystalline TiO2 (anatase and rutile) and anatase-to-rutile transformations, and also assessments of the influence of V ion implantation on microstructure development during calcination using estimates of crystallite size and microstrain. Non-implanted nanofibers were initially amorphous, with crystalline anatase first appearing at 600 °C, followed by rutile at 700 °C. The corresponding activation energies were 69(17) kJ/mol for the amorphous-to-crystalline TiO2 transformation and 129(5) kJ/mol for the anatase-to-rutile transformation. V ion implantation resulted in a lowering of the temperature at which each crystalline phase first appeared, with both phases being initially observed at 500 °C and with the anatase-to-rutile transformation being accelerated relative to the non-implanted sample. The effect of V ion implantation is seen through the substantial reduction in activation energies, which are 25(3) kJ/mol for amorphous-to-crystalline TiO2 and 16(3) kJ/mol for anatase-to-rutile transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.A. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)

    Article  ADS  Google Scholar 

  2. C. Yu, L. Wei, X. Li, J. Chen, Q. Fan, J. Yu, Mater. Sci. Eng. B 178, 344 (2013)

    Article  Google Scholar 

  3. P. Zhang, C. Shao, X. Li, M. Zhang, X. Zhang, Y. Sun, Y. Liu, J. Hazard. Mater. 237–238, 331 (2012)

    Article  Google Scholar 

  4. Q. Li, D.J.G. Satur, H. Kim, H.G. Kim, Mater. Lett. 76, 169 (2012)

    Article  Google Scholar 

  5. J.H. Huang, M.S. Wong, Thin Solid Films 520, 1379 (2011)

    Article  ADS  Google Scholar 

  6. P. Manurung, Y. Putri, W. Simanjuntak, I.M. Low, Ceram. Int. 39, 255 (2013)

    Article  Google Scholar 

  7. R.D. Shannon, J.A. Pask, J. Am. Ceram. Soc. 48, 391 (1965)

    Article  Google Scholar 

  8. D.W. Kim, N. Enomoto, Z. Nakagawa, K. Kawamura, J. Am. Ceram. Soc. 79, 1095 (1996)

    Article  Google Scholar 

  9. A. Natoli, A. Cabeza, A.G. Torre, M.A. Aranda, I. Santacruz, J. Am. Ceram. Soc. 95, 502 (2012)

    Article  Google Scholar 

  10. S. Kment, P. Kluson, V. Stranak, P. Virostko, J. Krysa, M. Cada, J. Pracharova, M. Kohout, M. Morozova, P. Adamek, Z. Hubicka, Electrochim. Acta 54, 3352 (2009)

    Article  Google Scholar 

  11. H. Li, W. Zhang, W. Pan, J. Am. Ceram. Soc. 94, 3184 (2011)

    Article  Google Scholar 

  12. S. Chuangchote, J. Jitputti, T. Sagawa, S. Yoshikawa, ACS Appl. Mater. Interfaces 1, 1140 (2009)

    Article  Google Scholar 

  13. S. Shang, X. Jiao, D. Chen, ACS Appl. Mater. Interfaces 4, 860 (2012)

    Article  Google Scholar 

  14. I.M. Low, H. Albetran, V.M. Prida, V. Vega, P. Manurung, M. Ionescu, J. Mater. Res. 28, 304 (2013)

    Article  ADS  Google Scholar 

  15. J. Liu, E.J. Nichols, J. Howe, S.T. Misture, J. Mater. Res. 28, 424 (2013)

    Article  ADS  Google Scholar 

  16. V.J. Babu, A.S. Nair, Z. Peining, S. Ramakrishna, Mater. Lett. 65, 3064 (2011)

    Article  Google Scholar 

  17. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  Google Scholar 

  18. S.U. Khan, M. Al-Shahry, W.B. Ingler, Science 297, 2243 (2002)

    Article  ADS  Google Scholar 

  19. A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Nano Lett. 6, 1080 (2006)

    Article  ADS  Google Scholar 

  20. M. Takeuchi, H. Yamashita, M. Matsuoka, M. Anpo, T. Hirao, N. Itoh, N. Iwamoto, Catal. Lett. 67, 135 (2000)

    Article  Google Scholar 

  21. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, M. Anpo, Catal. Today 84, 191 (2003)

    Article  Google Scholar 

  22. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo, J. Photochem. Photobiol. A Chem. 148, 257 (2002)

    Article  Google Scholar 

  23. G. Impellizzeri, V. Scuderi, L. Romano, P.M. Sberna, E. Arcadipane, R. Sanz, M. Scuderi, G. Nicotra, M. Bayle, R. Carles, F. Simone, V. Privitera, J. Appl. Phys. 116, 173507 (2014)

    Article  ADS  Google Scholar 

  24. C. Wessel, R. Ostermann, R. Dersch, B.M. Smarsly, J. Phys. Chem. C 115, 362 (2011)

    Article  Google Scholar 

  25. I.M. Low, B. Curtain, M. Philipps, Q.Z. Liu, M. Ionescu, J. Aust. Ceram. Soc. 48, 198 (2012)

    Google Scholar 

  26. J.S. Lee, T.J. Ha, M.H. Hong, H.H. Park, Thin Solid Films 529, 98 (2013)

    Article  ADS  Google Scholar 

  27. R. Liu, L.S. Qiang, W.D. Yang, H.Y. Liu, Mater. Res. Bull. 48, 1458 (2013)

    Article  Google Scholar 

  28. W. Luo, X. Hu, Y. Sun, Y. Huang, J. Mater. Chem. 22, 4910 (2012)

    Article  Google Scholar 

  29. J.Y. Park, S.S. Kim, Met. Mater. Int. 15, 95 (2009)

    Article  Google Scholar 

  30. J.Y. Park, J.J. Yun, C.H. Hwang, I.H. Lee, Mater. Lett. 64, 2692 (2010)

    Article  Google Scholar 

  31. Z. Zhang, C. Shao, L. Zhang, X. Li, Y. Liu, J. Colloid Interface Sci. 351, 57 (2010)

    Article  Google Scholar 

  32. W.K. Pang, I.M. Low, J. Am. Ceram. Soc. 93, 2871 (2010)

    Article  Google Scholar 

  33. R.A. Spurr, H. Myers, Anal. Chem. 29, 760 (1957)

    Article  Google Scholar 

  34. H. Albetran, H. Haroosh, Y. Dong, V.M. Prida, B.H. O’Connor, I.M. Low, Appl. Phys. A 116, 161 (2014)

    Article  ADS  Google Scholar 

  35. K. Matusita, T. Komatsu, R. Yokota, J. Mater. Sci. 19, 291 (1984)

    Article  ADS  Google Scholar 

  36. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  37. B.H. O’Connor, A.V. Riessen, J. Carter, G.R. Burton, D.J. Cookson, R.F. Garrett, J. Am. Ceram. Soc. 80, 1373 (1997)

    Article  Google Scholar 

  38. D.E. Cox, B.H. Toby, M.M. Eddy, Aust. J. Phys. 41, 117 (1988)

    Article  ADS  Google Scholar 

  39. G.C. Bond, A.J. Sarkany, G.D. Parfitt, J Catal. 57, 476 (1979)

    Article  Google Scholar 

  40. O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, J. Mater. Res. 18, 156 (2003)

    Article  ADS  Google Scholar 

  41. K.N.P. Kumar, J. Engell, J. Kumar, K. Keizer, T. Okubo, M. Sadakata, J. Mater. Sci. Lett. 14, 1784 (1995)

    Article  Google Scholar 

  42. K.N.P. Kumar, K. Keizer, A.J. Burggraaf, J. Mater. Chem. 3, 917 (1993)

    Article  Google Scholar 

  43. R. Nicula, M. Stir, C. Schick, E. Burkel, Thermochim. Acta 403, 129 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Australian Synchrotron (Powder Diffraction Beamline, AS122/PDFI/5075) and the Australian Institute of Nuclear Science and Engineering (ALNGRA11135). H. Albetran is grateful to the College of Education, University of Dammam, for the financial support in the form of a Ph.D. scholarship. Spanish MINECO grants under projects MAT2010-20798-C05-04 and MAT2013-48054-C2-2-R are also gratefully acknowledged. Scientific support from the XPS laboratory of the University of Oviedo SCTs is recognized. The authors would like to thank Dr. Y. Dong for allowing the use his electrospun machine, Ms. E. Miller for assistance with the SEM imaging, Dr. X. Wang for assistance with TEM, Dr. J. Kimpton at the Australian Synchrotron for advising on instrumentation at Powder Diffraction Beamline and Dr. M. Ionescu of ANSTO for helpful assistance with ion implantation and SRIM simulation of RBS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Low.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albetran, H., O’Connor, B.H., Prida, V.M. et al. Effect of vanadium ion implantation on the crystallization kinetics and phase transformation of electrospun TiO2 nanofibers. Appl. Phys. A 120, 623–634 (2015). https://doi.org/10.1007/s00339-015-9227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9227-8

Keywords

Navigation