Skip to main content
Log in

Impedance and magnetoelectric characteristics of (1 − x)BaTiO3xLa0.7Sr0.3MnO3 (x = 0.1 and 0.3) nano-composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have synthesized the phase-pure (1 − x)BaTiO3xLa0.7Sr0.3MnO3 (x = 0.1 and 0.3) magnetoelectric composites without interdiffusion among the existing phases. The magnetic measurements revealed an anomaly at the ferroelectric Curie temperature (393 K) of BaTiO3, and the dielectric data revealed an anomaly at the ferromagnetic transition temperature (360 K) of La0.7Sr0.3MnO3 ascertaining the magnetoelectric coupling in the composite. Impedance analysis indicated dipolar polarization contributions to the dielectric spectrum with two non-Debye-type relaxations. Both the grain and grain boundary contributions were present in the system with dominant grain boundary effect in all the composites. The composites show semiconducting behavior with the barrier hopping-type conducting mechanism. To avoid the free charge carrier and the space charge contributions, the magnetoelectric response was measured at high frequency range. The maximum values of magnetoelectric voltage coefficient measured at 100 kHz were 221 and 219 mV/Oe-cm for x = 0.1 and 0.3 samples, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.C. Chapon, G.R. Blake, M.J. Gutmann, S. Park, N. Hur, P.G. Radaelli, S.W. Cheong, Phys. Rev. Lett. 93, 177402 (2004)

    Article  ADS  Google Scholar 

  2. M. Fiebig, T. Lottermoser, D. Frohlich, A.V. Goltsev, R.V. Pisarev, Nature (London) 419, 818 (2002)

    Article  ADS  Google Scholar 

  3. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  ADS  Google Scholar 

  4. T.T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)

    Article  ADS  Google Scholar 

  5. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429, 392 (2004)

    Article  ADS  Google Scholar 

  6. J. Wie, G. Xu, Y. Yang, C. Cheng, Mater. Chem. Phys. 115, 400 (2009)

    Article  Google Scholar 

  7. A.M.J.G. Run, D.R. Terrell, J.H. Scholing, J. Mater. Sci. 9, 1710 (1974)

    Article  ADS  Google Scholar 

  8. P. Murugavel, P. Padhan, W. Prellier, J. Phys.: Condens. Matter 18, 3377 (2006)

    ADS  Google Scholar 

  9. H. Ryu, P. Murugavel, J.H. Lee, S.C. Chae, T.W. Noh, Y.S. Oh, H.J. Kim, K.H. Kim, J.H. Jang, M. Kim, C. Bae, J.-G. Park, Appl. Phys. Lett. 89, 102907 (2006)

    Article  ADS  Google Scholar 

  10. J. Ryu, S. Priya, K. Uchino, H.E. Kim, J. Electroceram. 8, 107 (2002)

    Article  Google Scholar 

  11. C. Nayek, K.K. Sahoo, P. Murugavel, Mater. Res. Bull. 48, 1308 (2013)

    Article  Google Scholar 

  12. L. Huang, Z. Chen, J.D. Wilson, S. Banerjee, R.D. Robison, I.P. Herman, R. Laibowitz, S. O’Brien, J. Appl. Phys. 100, 034316 (2006)

    Article  ADS  Google Scholar 

  13. C.C. Wang, M. He, F. Yang, J. Wen, G.Z. Liu, H.B. Lu, Appl. Phys. Lett. 90, 192904 (2007)

    Article  ADS  Google Scholar 

  14. H. Lu, T.A. George, Y. Wang, I. Ketsman, J.D. Burton, C.-W. Bark, S. Ryu, D.J. Kim, J. Wang, C. Binek, P.A. Dowben, A. Sokolov, C.-B. Eom, E.Y. Tsymbal, A. Gruverman, Appl. Phys. Lett. 100, 232904 (2012)

    Article  ADS  Google Scholar 

  15. L. Tingxian, L. Kuoshe, J. Appl. Phys. 115, 044316 (2014)

    Article  ADS  Google Scholar 

  16. N. Sharma, A. Gaur, U.K. Gaur, R.K. Kotnala, J. Alloys Compd. 592, 244 (2014)

    Article  Google Scholar 

  17. V.S. Yadav, D.K. Sahu, S. Singh, M. Kumar, D.C. Dhubkarya, AIP Conf. Proc. 1285, 267 (2010)

    Article  ADS  Google Scholar 

  18. H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alayaa, J. Magn. Magn. Mater. 316, 23 (2007)

    Article  ADS  Google Scholar 

  19. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74, 125 (1976)

    Article  Google Scholar 

  20. E. Barsoukov, J.R. Macdonal, Impedance spectroscopy theory experiment and applications, 2nd edn. (Wiley, New York, 2005), pp. 13–75

    Book  Google Scholar 

  21. S. Sumi, P.P. Rao, M. Deepa, P. Koshy, J. Appl. Phys. 108, 063718 (2010)

    Article  ADS  Google Scholar 

  22. G.E. Pike, Phys. Rev. B 6, 1572 (1972)

    Article  ADS  Google Scholar 

  23. A. Pelaiz-Barranco, J.D.S. Guerra, R. Lopez-Noda, E.B. Araujo, J. Phys. D. 41, 215503 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Murugavel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayek, C., Murugavel, P., Dinesh Kumar, S. et al. Impedance and magnetoelectric characteristics of (1 − x)BaTiO3xLa0.7Sr0.3MnO3 (x = 0.1 and 0.3) nano-composites. Appl. Phys. A 120, 615–622 (2015). https://doi.org/10.1007/s00339-015-9224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9224-y

Keywords

Navigation