Skip to main content
Log in

Enhancement of polymer photovoltaic performances by doping with modified carbon black nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Low-cost carbon black nanoparticle (CBNP) was chemically modified by grafting with flexible alkyl groups. The modified CBNP (m-CBNP) forms a spider-like cluster with a considerably enhanced solubility, thereby enabling their uniform dispersal into a polymer matrix or active layers of bulk hetero-junction polymer photovoltaic cells, such as a blend of poly(3-hexylthiophene) and (6,6)-phenyl C61 butyric acid methyl ester. The performance of devices containing the m-CBNP was substantially improved. Charge carrier mobility enhancement was found to play a key role, leading to a 30 % improvement in the short-circuit current of the devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 43). Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014)

    Article  Google Scholar 

  2. S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, 2.5 % efficient organic plastic solar cells. Appl. Phys. Lett. 78(6), 841–843 (2001)

    Article  ADS  Google Scholar 

  3. J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang et al., Double-walled carbon nanotube solar cells. Nano Lett. 7(8), 2317–2321 (2007)

    Article  ADS  Google Scholar 

  4. C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene. Carbon 48(8), 2127–2150 (2010)

    Article  Google Scholar 

  5. A.I. Medalia, Electrical conduction in carbon black composites. Rubber Chem. Technol. 59(3), 432–454 (1986)

    Article  Google Scholar 

  6. J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang et al., Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon 48(6), 1731–1737 (2010)

    Article  Google Scholar 

  7. D. Chung, Materials for electromagnetic interference shielding. J. Mater. Eng. Perform. 9(3), 350–354 (2000)

    Article  Google Scholar 

  8. F. El-Tantawy, K. Kamada, H. Ohnabe, In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications. Mater. Lett. 56(1), 112–126 (2002)

    Article  Google Scholar 

  9. M.C. Lonergan, E.J. Severin, B.J. Doleman, S.A. Beaber, R.H. Grubbs, N.S. Lewis, Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem. Mater. 8(9), 2298–2312 (1996)

    Article  Google Scholar 

  10. P. Mather, K. Thomas, Carbon black/high density polyethylene conducting composite materials: part II the relationship between the positive temperature coefficient and the volume resistivity. J. Mater. Sci. 32(7), 1711–1715 (1997)

    Article  ADS  Google Scholar 

  11. C.-K. Leong, D. Chung, Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance. Carbon 41(13), 2459–2469 (2003)

    Article  Google Scholar 

  12. V. Georgakilas, K. Kordatos, M. Prato, D.M. Guldi, M. Holzinger, A. Hirsch, Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124(5), 760–761 (2002)

    Article  Google Scholar 

  13. N. Tagmatarchis, M. Prato, Functionalization of carbon nanotubes via 1, 3-dipolar cycloadditions. J. Mater. Chem. 14(4), 437–439 (2004)

    Article  Google Scholar 

  14. Z. Zhang, Z. He, C. Liang, A.H. Lind, A. Diyaf, Y. Peng et al., A preliminary development in hybrid a-silicon/polymer solar cells. Renew Energy 63, 145–152 (2014)

    Article  Google Scholar 

  15. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts (John Wiley & Sons, Chichester, 2004)

    Google Scholar 

  16. I. Llamas-Jansa, C. Jäger, H. Mutschke, T. Henning, Far-ultraviolet to near-infrared optical properties of carbon nanoparticles produced by pulsed-laser pyrolysis of hydrocarbons and their relation with structural variations. Carbon 45(7), 1542–1557 (2007)

    Article  Google Scholar 

  17. C. Jäger, T. Henning, R. Schlögl, O. Spillecke, Spectral properties of carbon black. J. Non-Cryst. Solids 258(1), 161–179 (1999)

    Article  Google Scholar 

  18. F. Rositani, P. Antonucci, M. Minutoli, N. Giordano, A. Villari, Infrared analysis of carbon blacks. Carbon 25(3), 325–332 (1987)

    Article  Google Scholar 

  19. M. Panar, P. Avakian, R. Blume, K. Gardner, T. Gierke, H. Yang, Morphology of poly(p-phenylene terephthalamide) fibers. J. Polym Sci Polym Phys Edition 21(10), 1955–1969 (1983)

    Article  ADS  Google Scholar 

  20. Z. He, F.J. Davis, R.H. Olley, G.R. Mitchell, Phase behaviour and non-periodic crystallisation of random aromatic copolyesters and their side chain bearing systems. Polymer 42(12), 5351–5363 (2001)

    Article  Google Scholar 

  21. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction (Prentice Hall, Upper Saddle River, 2001)

    Google Scholar 

  22. A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939)

    Article  ADS  MATH  Google Scholar 

  23. M.A. Lampert, P. Mark, Current Injection in Solids (Academic Press, New York, 1970)

    Google Scholar 

  24. P. Blom, M. De Jong, J. Vleggaar, Electron and hole transport in poly(p-phenylene vinylene) devices. Appl. Phys. Lett. 68(23), 3308–3310 (1996)

    Article  ADS  Google Scholar 

  25. C. Melzer, E.J. Koop, V.D. Mihailetchi, P.W. Blom, Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14(9), 865–870 (2004)

    Article  Google Scholar 

  26. X. Zhang, Z. He, C. Liang, Y. Wang, Q. Zhuang, Z. Han, Trap-induced light enhancement from a polymer light emitting device. Appl. Phys. Lett. 103(4), 043306 (2013)

    Article  ADS  Google Scholar 

  27. S. Berson, R. de Bettignies, S. Bailly, S. Guillerez, B. Jousselme, Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv. Funct. Mater. 17(16), 3363–3370 (2007)

    Article  Google Scholar 

  28. V. Sadhu, N. Nismy, A. Adikaari, S.J. Henley, M. Shkunov, S.R.P. Silva, The incorporation of mono-and bi-functionalized multiwall carbon nanotubes in organic photovoltaic cells. Nanotechnology 22(26), 265607 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded in parts by the NNSF China (21174016, 11474017), FRFCU (2013JBZ004), RFDP (No. 20120009110031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqun He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., He, Z., Xu, M. et al. Enhancement of polymer photovoltaic performances by doping with modified carbon black nanoparticles. Appl. Phys. A 120, 601–607 (2015). https://doi.org/10.1007/s00339-015-9222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9222-0

Keywords

Navigation