Skip to main content
Log in

Improved photoelectrical performance of graphene supported highly crystallized anatase TiO2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, titanium oxysulfate (TiOSO4) and graphene were used as titanium source and supporter, respectively, to synthesize anatase TiO2-graphene (TiO2-G) composite. Crystal structure, morphology, and composition of TiO2-G were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, and thermogravimetric analysis. Both TiO2-G and blank TiO2 powders exhibit spindle-shaped structure with the long axis along [001]. Compared to unsupported TiO2, TiO2 nanoparticles uniformly formed on graphene surface. When fabricated into dye-sensitized solar cells, photoelectrical conversion efficiency of TiO2-G (2.3 %) was much higher than that of blank TiO2 (0.89 %) prepared at the same conditions. Moreover, high sintering temperature enhanced photoelectrical performance of the composite. When the temperature was increased from 450 to 600 °C, the efficiency was improved from 1.5 to 2.6 %. The findings above demonstrate that TiO2-G has great potential for applications in dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Oregan, M. Grfitzeli, Nature 3, 737 (1991)

    Article  ADS  Google Scholar 

  2. M. Grätzel, Nature 414, 338 (2001)

    Article  ADS  Google Scholar 

  3. D.J. Klionsky, F.C. Abdalla, H. Abeliovich et al., Autophagy 8, 445 (2012)

    Article  Google Scholar 

  4. J. Burschka, N. Pellet, S.J. Moon et al., Nature 499, 316 (2013)

    Article  ADS  Google Scholar 

  5. D. Hwang, H. Lee, S.Y. Jang et al., ACS Appl. Mater. Interfaces 3, 2719 (2011)

    Article  Google Scholar 

  6. F. Sauvage, D. Chen, P. Comte et al., ACSNano 4, 4420 (2010)

    Google Scholar 

  7. L. Grinis, S. Kotlyar, S. Rühle et al., Adv. Funct. Mater. 20, 282 (2010)

    Article  Google Scholar 

  8. S. Muduli, W. Lee, V. Dhas et al., ACS Appl. Mater. Interfaces 1, 2030 (2009)

    Article  Google Scholar 

  9. F. Xie, S.J. Cherng, S. Lu et al., ACS Appl. Mater. Interfaces 6, 5367 (2014)

    Article  Google Scholar 

  10. Y. Jun, S.M. Lee, N.J. Kang et al., J. Am. Chem. Soc. 123, 5150 (2001)

    Article  Google Scholar 

  11. L. Manna, E.C. Scher, A.P. Alivisatos, J. Am. Chem. Soc. 122, 12700 (2000)

    Article  Google Scholar 

  12. H. Yan, R. He, J. Pham et al., Adv. Mater. 15, 402 (2003)

    Article  Google Scholar 

  13. M. Grätzel, Inorg. Chem. 44, 6841 (2005)

    Article  Google Scholar 

  14. Z. Zhang, C.C. Wang, R. Zakaria et al., J. Phys. Chem. B 102, 10871 (1998)

    Article  Google Scholar 

  15. Y. Zhu, J. Shi, Z. Zhang et al., Anal. Chem. 74, 120 (2002)

    Article  Google Scholar 

  16. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  ADS  Google Scholar 

  17. J.M. Tarascon, M. Armand, Nature 414, 359 (2001)

    Article  ADS  Google Scholar 

  18. M. Hirano, C. Nakahara, K. Ota et al., J. Am. Ceram. Soc. 85, 1333 (2002)

    Article  Google Scholar 

  19. T. Peng, D. Zhao, K. Dai et al., J. Phys. Chem. B 109, 4947 (2005)

    Article  Google Scholar 

  20. S. Kim, S.J. Hwang, W. Choi, J. Phys. Chem. B 109, 24260 (2005)

    Article  Google Scholar 

  21. N. Sobana, M. Muruganadham, M. Swaminathan, J. Mol. Catal. A Chem. 258, 124 (2006)

    Article  Google Scholar 

  22. Y. Bessekhouad, D. Robert, J.V. Weber, J. Photochem. Photobiol. Chem. 163, 569 (2004)

    Article  Google Scholar 

  23. K.S.A. Novoselov, A.K. Geim, S.V. Morozov et al., Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  24. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  25. Y. Zhang, Y.W. Tan, H.L. Stormer et al., Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  26. C. Berger, Z. Song, T. Li et al., J. Phys. Chem. B 108, 19912 (2004)

    Article  Google Scholar 

  27. K.S. Novoselov, V.I. Fal, L. Colombo et al., Nature 490, 192 (2012)

    Article  ADS  Google Scholar 

  28. G. Jiang, Z. Lin, C. Chen et al., Carbon 49, 2693 (2011)

    Article  Google Scholar 

  29. S.R. Kim, M.K. Parvez, M. Chhowalla, Chem. Phys. Lett. 483, 124 (2009)

    Article  ADS  Google Scholar 

  30. A.A. Madhavan, S. Kalluri, D.K. Chacko et al., RSC Adv. 2, 13032 (2012)

    Article  Google Scholar 

  31. A. Hagfeldt, G. Boschloo, L. Sun et al., Chem. Rev. 110, 6595 (2010)

    Article  Google Scholar 

  32. S. Yanagida, Y. Yu, K. Manseki, Acc. Chem. Res. 42, 1827 (2009)

    Article  Google Scholar 

  33. I. Chung, B. Lee, J. He et al., Nature 485, 486 (2012)

    Article  ADS  Google Scholar 

  34. M. Hirano, K. Ota, H. Iwata, Chem. Mater. 16, 3725 (2004)

    Article  Google Scholar 

  35. W. Li, Y. Bai, C. Liu et al., Environ. Sci. Technol. 43, 5423 (2009)

    Article  ADS  Google Scholar 

  36. V. Štengl, D. Popelková, P. Vláčil, J. Phys. Chem. C 115, 25209 (2011)

    Article  Google Scholar 

  37. X. Sun, Q. Sun, Y. Li et al., Phys. Chem. Chem. Phys. 15, 18716 (2013)

    Article  Google Scholar 

  38. W.Q. Wu, Y.F. Xu, H.S. Rao et al., J. Phys. Chem. C 118, 16426 (2014)

    Article  Google Scholar 

  39. P. Cheng, Y. Liu, P. Sun et al., J. Power Sources 268, 19 (2014)

    Article  Google Scholar 

  40. X. Wang, F. Hao, H. Chen et al., Pure Appl. Chem. 85, 417 (2012)

    Article  Google Scholar 

  41. F. Hao, X. Wang, C. Zhou et al., J. Phys. Chem. C 116, 19164 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (51402161, 51172113, and 51373086), the China Postdoctoral Science Foundation (2013T60652 & 2012M521297), the International Science and Technology Cooperation Program of China (2014DFA60150), the Research Fund for the Doctoral Program of Higher Education of China (20123719110001), the Taishan Overseas Scholar Program, the Shandong Postdoctoral Innovative Program (201203028), and the Qingdao Applied Basic Research Project (14-2-4-51-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Sun, Q., Zhao, M. et al. Improved photoelectrical performance of graphene supported highly crystallized anatase TiO2 . Appl. Phys. A 120, 595–600 (2015). https://doi.org/10.1007/s00339-015-9221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9221-1

Keywords

Navigation