Advertisement

Applied Physics A

, Volume 120, Issue 2, pp 579–585 | Cite as

Investigation of amorphous RuMoC alloy films as a seedless diffusion barrier for Cu/p-SiOC:H ultralow-k dielectric integration

  • Guohua Jiao
  • Bo LiuEmail author
  • Qiran Li
Article

Abstract

Ultrathin RuMoC amorphous films prepared by magnetron co-sputtering with Ru and MoC targets in a sandwiched scheme Si/p-SiOC:H/RuMoC/Cu were investigated as barrier in copper metallization. The evolution of final microstructure of RuMoC alloy films show sensitive correlation with the content of doped Mo and C elements and can be easily controlled by adjusting the sputtering power of the MoC target. There was no signal of interdiffusion between the Cu and SiOC:H layer in the sample of Cu/RuMoC/p-SiOC:H/Si, even annealing up to 500 °C. Very weak signal of oxygen have been confirmed in the RuMoC barrier layer both as-deposited and after being annealed, and a good performance on preventing oxygen diffusion has been proved. Leakage current and resistivity evaluations also reveal the excellent thermal reliability of this Si/p-SiOC:H/RuMoC/Cu film stack at the temperatures up to 500 °C, indicating its potential application in the advanced barrierless Cu metallization.

Keywords

Sheet Resistance Energy Dispersive Spectrometer Energy Dispersive Spectrometer Result Resistivity Evaluation Copper Silicide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11075112), the Shenzhen Industry Development Fund Project (Project No. CXZZ20130322162305933) and the Shenzhen Engineering Laboratory Project (No. 2012-1127).

References

  1. 1.
    B. Liu, Z.X. Song, Y.H. Li, K.W. Xu, Appl. Phys. Lett. 93, 174108 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    B. Liu, J.J. Yang, C.H. Liu, Y. Wang, Appl. Phys. Lett. 94, 153116 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    F.L. Wei, C.L. Gan, T.L. Tan, C.S. Hau-Riege, A.P. Marathe, J.J. Vlassak, C.V. Thompson, J. Appl. Phys. 104, 023529 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    E. Martinez, C. Guedj, D. Mariolle, C. Licitra, O. Renault, F. Bertin, A. Chabli, G. Imbert, R. Delsol, J. Appl. Phys. 104, 073708 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    The International Technology Roadmap for Semiconductors. www.itrs.net, (2010 update)
  6. 6.
    T.N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M.J. Kim, K.H. Chen, C.T. Wu, L.C. Chen, Appl. Phys. Lett. 86, 083104 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    H. Wojcik, C. Krien, U. Merkel, J.W. Bartha, M. Knaut, M. Geidel, B. Adolphi, V. Neumann, C. Wenzel, M. Bendlin, K. Richter, D. Makarov, Microelectron. Eng. 112, 103–109 (2013)CrossRefGoogle Scholar
  8. 8.
    T.-K. Eom, W. Sari, T. Cheon, S.-H. Kim, W.K. Kim, Thin Solid Films 521, 73–77 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    K.-C. Hsu, D.-C. Perng, Y.-C. Wang, J. Alloys Compd 516, 102–106 (2012)CrossRefGoogle Scholar
  10. 10.
    L.C. Leu, D.P. Norton, L. McElwee-White, T.J. Anderson, Appl. Phys. Lett. 92, 111917 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    L.B. Henderson, J.G. Ekerdt, Thin Solid Films 517, 1645–1649 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    K.-C. Hsu, D.-C. Perng, J.-B. Yeh, Y.-C. Wang, Appl. Surf. Sci. 258, 7225–7230 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S. Bouhtiyya, R. Lucio Porto, B. Laïk, P. Boulet, F. Capon, J.P. Pereira-Ramos, T. Brousse, J.F. Pierson, Scr. Mater. 68, 659–662 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Damayanti, T. Sritharan, S.G. Mhaisalkar, Z.H. Gan, Appl. Phys. Lett. 88, 044101 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    C.C. Tripathi, M. Kumar, D. Kumar, Appl. Surf. Sci. 255, 3518–3522 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    S. Kacim, L. Binst, F. Reniers, F. Bouillon, Thin Solid Films 287, 25–31 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    Q.F. Huang, S.F. Yoon, H. Rusli, H. Yang, J. Ahn, Q. Zhang, Diam. Relat. Mater. 9, 534–538 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    M. Trgala, M. Žemlička, P. Neilinger, M. Rehák, M. Leporis, Š. Gaži, J. Greguš, T. Plecenik, T. Roch, E. Dobročka, M. Grajcar, Appl. Surf. Sci. 312, 216–219 (2014)CrossRefGoogle Scholar
  19. 19.
    U. Jansson, E. Lewin, Thin Solid Films 536, 1–24 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    B. Liu, Y.P. Zhang, K.W. Xu, Microelectron. Eng. 118, 41–46 (2014)CrossRefGoogle Scholar
  21. 21.
    M.O. Aboelfotoh, L. Krusin-Elbaum, J. Appl. Phys. 70, 3382 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Shenzhen Institutes of Advanced Technology Chinese Academy of SciencesShenzhenPeople’s Republic of China
  2. 2.The Chinese University of Hong KongShatinPeople’s Republic of China
  3. 3.Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and TechnologySichuan UniversityChengduPeople’s Republic of China
  4. 4.Institut d’Electronique FondamentaleCNRS-Université Paris Sud UMR 8622OrsayFrance

Personalised recommendations