Skip to main content
Log in

Gain enhancement with near-zero-index metamaterial superstrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The objective of this paper was to use a near-zero-index (n) metamaterial as a single- or a double-layer superstrate suspended above a microstrip patch antenna, operating at 43 GHz, for the gain enhancement. The single metamaterial layer superstrate consists of a periodic arrangement of Jerusalem cross unit cells and behaves as an homogeneous medium characterized by a refractive index close to zero. This metamaterial property allows gathering radiated waves from the antenna and collimates them toward the superstrate normal direction. The proposed design improves the antenna gain by 5.1 dB with the single-layer superstrate and 7 dB with the double-layer superstrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.A. Munk, Metamaterial: Critique and Alternatives (Wiley, New York, 2009)

    Book  Google Scholar 

  2. Y.J. Lee, J. Yeo, R. Mittra, W.S. Park, Design of a high-directivity electromagnetic band gap (EBG) resonator using a frequency selective surface (FSS) superstrate. Microw. Opt. Tech. Lett. 43(6), 462–467 (2004)

    Article  Google Scholar 

  3. Z.-B. Weng, N.-B. Wang, Y.-C. Jiao, F.-S. Zhang, A directive patch antenna with metamaterial structure. Microw. Opt. Technol. Lett. 49(2), 456–459 (2007)

    Article  Google Scholar 

  4. J. Cha, Y. Kuga, A steerable array antenna using controllable 4-bit dielectric slab phase shifters on a coplanar waveguide at 24 Ghz. Microw. Opt. Technol. Lett. 49(12), 3118–3122 (2007)

    Article  Google Scholar 

  5. Y. Jin, S. He, Enhancing and suppressing radiation with some permeability-near-zero structures. Opt. Express 18(16), 16587–16593 (2010)

    Article  ADS  Google Scholar 

  6. B. Edwards, A. Alù, M.E. Young, M.G. Silveirinha, N. Engheta, Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100(3), 033903-1–033903-4 (2008)

    Article  ADS  Google Scholar 

  7. J. Dalin, in Gain Improvement of a Microstrip Patch Antenna Using Metamaterial Superstrate with the Zero Refractive Index. International Conference on Microwave and Millimeter Wave Technology (ICMMT), (China, May 2012)

  8. G. Augustin, B.P. Chacko, T.A. Denidni, A zero-index metamaterial unit-cell for antenna gain enhancement. Antennas and propagation society international symposium (APSURSI), IEEE-AP-S, 7–13 July 2013, pp. 126–127

  9. L. Solymar, E. Shamonina, waves in Metamaterials (Oxford University Press, New York, 2009)

    Google Scholar 

  10. T.L. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)

    Article  Google Scholar 

  11. B. Kouassi, I. Ghauri, L. Deneire, in Reciprocity-Based Cognitive Transmissions Using a MU Massive MIMO Approach. IEEE International Conference on Communications (ICC), 2013

  12. J. Hoydis, S. ten Brink, M. Debbah, Massive MIMO in the UL/DL of cellular networks: how many antennas do we need? IEEE J. Select. Areas Commun. 31(2), 160–171 (2013)

    Article  Google Scholar 

  13. M. Bouzouad, B. Ouagague, Antennes accordables à base de métamatériaux. 15èmesJournées Nationales Microondes, 23-24-25 Mai 2007. Toulouse

  14. D.R. Smith, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Department of Electrical and Computer Engineering, Duke University, Box 90291, Durham, North Carolina 27708, USA, PHYSICAL REVIEW E 71, 036617 (2005)

  15. Y. Yuan, B.I. Popa, S.A. Cummer, Zero loss magnetic metamaterials using powered active unit cells. Opt. Express 17, 16135–16143 (2009)

    Article  ADS  Google Scholar 

  16. N. Engheta, R.W. Ziolkowski, Metamaterials physics and engineering explorations (IEEE press, Piscataway, 2006)

    Google Scholar 

  17. C.R. Simovski et al., Homogenization of planar bianisotropic arrays on the dielectric interface. Electromagnetics 22, 177–189 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Chaker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzouad, M., Chaker, S.M., Bensafielddine, D. et al. Gain enhancement with near-zero-index metamaterial superstrate. Appl. Phys. A 121, 1075–1080 (2015). https://doi.org/10.1007/s00339-015-9206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9206-0

Keywords

Navigation