Skip to main content
Log in

Distinction between amorphous and crystalline silicon by means of electron energy-loss spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A distinction between amorphous and crystalline silicon by means of the silicon \(\hbox {L}_{23}\)-edges acquired by electron energy-loss spectroscopy is presented. Both the fine structures of the \(\hbox {L}_{23}\)-edges and their threshold energies have been determined and are compared. Since the zero loss peak and the adjacent core loss edges could not be acquired simultaneously due to their strong difference in intensity, MgO was used as an external reference for the exact and absolute determination of the threshold energies. As a result, the threshold energies of amorphous silicon and crystalline silicon are identical, while the fine structures of the \(\hbox {L}_{23}\)-edges vary significantly. Calculations of the \(\hbox {L}_{23}\)-edges of crystalline silicon are presented in order to provide an explanation for the differences in their fine structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Eberhardt, G. Kalkoffen, C. Kunz, D. Aspnes, M. Cardona, Photoemission studies of 2p core levels of pure and heavily doped silicon. Phys. Status Solidi (b) 88, 135–143 (1978)

    Article  ADS  Google Scholar 

  2. C. GähwilIer, F.C. Brown, Photoabsorption near the \(\text{ L }_{\rm II, III}\) edge of silicon and aluminum. Phys. Rev. B 2(6), 1918–1925 (1970)

    Article  ADS  Google Scholar 

  3. F.J. Himpsel, P. Heimann, T.-C. Chiang, D.E. Eastman, Geometry-dependent Si(2p) surface core-level excitations for Si(111) and Si(100) surfaces. Physi. Rev. Lett. 45(13), 1112–1115 (1980)

    Article  ADS  Google Scholar 

  4. G.R. Harp, D.K. Saldin, B.P. Tonner, Finite-size effects and short-range crystalline order in Si and \(\text{ SiO }_2\) studied by X-ray absorption fine structure spectroscopy. J. Phys. Condens. Matter 5, 5377–5388 (1993)

    Article  ADS  Google Scholar 

  5. M. Schade, N. Geyer, B. Fuhrmann, F. Heyroth, H.S. Leipner, High-resolution analytical electron microscopy of catalytically etched silicon nanowires. Appl. Phys. A 95(2), 325–327 (2009)

    Article  ADS  Google Scholar 

  6. P.E. Batson, Silicon \(\text{ L }_{23}\) near-edge fine structure in confined volumes. Ultramicroscopy 50(1), 1–12 (1993)

    Article  Google Scholar 

  7. X. Weng, P. Rez, P.E. Batson, Single electron calculations for the Si \(\text{ L }_{23}\) near edge structure. Solid State Commun. 74(9), 1013–1015 (1990)

    Article  ADS  Google Scholar 

  8. I. Berbezier, J.M. Martin, C. Bernardi, J. Derrien, EELS investigation of luminescent nanoporous p-type silicon. Appl. Surface Sci. 102, 417–422 (1996)

    Article  ADS  Google Scholar 

  9. V. Zorba, N. Boukos, I. Zergioti, C. Fotakis, Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties. Appl. Opt. 47(11), 1846–1850 (2008)

    Article  ADS  Google Scholar 

  10. G.J. Auchterlonie, D.R. McKenzie, D.J.H. Cockayne, Using ELNES with parallel EELS for differentiating between a-Si:x thin films. Ultramicroscopy 31, 217–222 (1989)

    Article  Google Scholar 

  11. K. Hayakawa, T. Fujikawa, S. Muto, Experimental and full multiple scattering approaches to energy-loss near-edge structures (ELNES) for c-Si, a-Si and a-Si:H. Chem. Phys. Lett. 371, 498–503 (2003)

    Article  ADS  Google Scholar 

  12. T. Rublack, M. Schade, M. Muchow, H.S. Leipner, G. Seifert, Proof of damage-free selective removal of thin dielectric coatings on silicon wafers by irradiation with femtosecond laser pulses. J. Appl. Phys. 112, 023521 (2012)

    Article  ADS  Google Scholar 

  13. M. Schade, T. Mchedlidze, M. Kittler, H.S. Leipner, Light induced crystallization of an amorphous silicon film embedded between silicon oxide layers. Phys. Status Solidi B 251(2), 439–445 (2014)

    Article  ADS  Google Scholar 

  14. M. Schade, O. Varlamova, J. Reif, H. Blumtritt, W. Erfurth, H.S. Leipner, High-resolution investigations of ripple structures formed by femtosecond laser irradiation of silicon. Anal. Bioanal. Chem. 396(5), 1905–1911 (2010)

    Article  Google Scholar 

  15. M. Schade, H.S. Leipner, W. Fränzel, Spectroscopic investigation of silicon polymorphs formed by indentation. Mater. Sci. Forum 725, 199–202 (2012)

    Article  Google Scholar 

  16. A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson, Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 58, 7565 (1998)

    Article  ADS  Google Scholar 

  17. M.S. Moreno, K. Jorissen, J.J. Rehr, Practical aspects of electron energy-loss spectroscopy (EELS) calculations using FEFF8. Micron 38, 1 (2007)

    Article  Google Scholar 

  18. J. Scott, P.J. Thomas, M. MacKenzie, S. McFadzean, J. Wilbrink, A.J. Craven, W.A.P. Nicholson, Near-simultaneous dual energy range EELS spectrum imaging. Ultramicroscopy 108, 1586–1594 (2008)

    Article  Google Scholar 

  19. P. Longo, P.J. Thomas, R.D. Twesten, Atomic-level EELS mapping using high-energy edges in dualeels mode. Microsc. Today 20, 30–36 (2012)

    Article  Google Scholar 

  20. C.C. Ahn (ed.), Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas, 2nd edn. (WILEY-VCH Verlag GmbH & Co., KGaA Weinheim, 2004)

    Google Scholar 

  21. B. Fuhrmann, H.S. Leipner, H.-R. Höche, L. Schubert, P. Werner, U. Gösele, Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett. 5(12), 2524–2527 (2005)

    Article  ADS  Google Scholar 

  22. N. Budini, P.A. Rinaldi, J.A. Schmidt, R.D. Arce, R.H. Buitrago, Influence of microstructure and hydrogen concentration on amorphous silicon crystallization. Thin Solid Films 518, 5349–5354 (2010)

    Article  ADS  Google Scholar 

  23. D.E. Carlson, Hydrogenated microvoids and light-induced degradation of amorphous-silicon solar cells. Appl. Phys. A 41(4), 305–309 (1986)

    Article  ADS  Google Scholar 

  24. R.F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum Press, Berlin, 1996)

    Book  Google Scholar 

  25. A. Feldhoff, E. Pippel, J. Woltersdorf, Interface engineering of carbon-fiber reinforced Mg–Al alloys. Adv. Eng. Mater. 2(8), 471–480 (2000)

    Article  Google Scholar 

  26. P. Rulis, A.R. Lupini, S.J. Pennycook, W.Y. Ching, Spectroscopic imaging of electron energy loss spectra using ab initio data and function field visualization. Ultramicroscopy 109, 1472–1478 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by the German Federal Ministry of Education and Research within the joint research project SINOVA (Project No. 03SF0352).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schade, M., Fuhrmann, B., Chassé, A. et al. Distinction between amorphous and crystalline silicon by means of electron energy-loss spectroscopy. Appl. Phys. A 120, 393–399 (2015). https://doi.org/10.1007/s00339-015-9201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9201-5

Keywords

Navigation