Skip to main content
Log in

Experimental investigation of high aspect ratio tubular microstructuring of glass by means of picosecond Bessel vortices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on experiments on glass material modification using nondiffractive high-order picosecond pulsed Bessel beams, generated by a spatial light phase modulator and then suitably demagnified. We investigate the possibility to generate in single-shot tubular microstructures across 100-μm-thin borosilicate glass, when a suitable energy range is considered, and we highlight the effect of the unstable propagation regime for very high input energies, leading to a breakup of the tubular microstructure. The micromachined glass samples are observed on their top and bottom surfaces as well as longitudinally along their thickness. For the conical beam geometry used, we observe no internal material modification pattern with pulses in the femtosecond range. A comparison with glass machining by means of a focused ring-shaped beam is also presented. The results highlight the role of the conical energy flux for single-shot smooth high aspect ratio material modification in a regime where nonlinear Kerr effects are absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Gattass, E. Mazur, Nat. Photonics 2, 219 (2008)

    Article  ADS  Google Scholar 

  2. G. Della Valle, R. Osellame, P. Laporta, J. Opt. A Pure Appl. Opt. 11, 013001 (2009)

    Article  ADS  Google Scholar 

  3. R. Osellame, H.J.W.M. Hoekstra, G. Cerullo, M. Pollnau, Laser Photonics Rev. 5, 442 (2011)

    Article  Google Scholar 

  4. M. Duocastella, C.B. Arnold, Laser Photonics Rev. 6, 607 (2012)

    Article  Google Scholar 

  5. A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47 (2007)

    Article  ADS  Google Scholar 

  6. M.K. Bhuyan, F. Courvoisier, P.A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, J.M. Dudley, Appl. Phys. Lett. 97, 081102 (2010)

    Article  ADS  Google Scholar 

  7. M.K. Bhuyan, F. Courvoisier, H.S. Phing, O. Jedrkiewicz, S. Recchia, P. Di Trapani, J.M. Dudley, Eur. Phys. J. Spec. Top. 199, 101 (2011)

    Article  Google Scholar 

  8. M.K. Bhuyan, P.K. Velpula, J.P. Colombier, T. Olivier, N. Faure, R. Stoian, Appl. Phys. Lett. 104, 021107 (2014)

    Article  ADS  Google Scholar 

  9. D.A. Yashunin, YuA Malkov, A.N. Stepanov, Quantum Electron. 43, 300 (2013)

    Article  ADS  Google Scholar 

  10. B. Yalizay, T. Ersoy, B. Soylu, S. Akturk, Appl. Phys. Lett. 100, 031104 (2012)

    Article  ADS  Google Scholar 

  11. I. Alexeev, K.-H. Leitz, A. Otto, M. Schmidt, Phys. Procedia 5, 533 (2010)

    Article  ADS  Google Scholar 

  12. Y. Matsuoka, Y. Kizuka, T. Inoue, Appl. Phys. A 84, 423 (2006)

    Article  ADS  Google Scholar 

  13. B. Wetzel, C. Xie, P.-A. Lacourt, J. Dudley, F. Courvoisier, Appl. Phys. Lett. 103, 241111 (2013)

    Article  ADS  Google Scholar 

  14. W. Cheng, P. Polynkin, J. Opt. Soc. Am. B 31, C48 (2014)

    Article  Google Scholar 

  15. X. Long, J. Bai, W. Zhao, R. Stoian, R. Hui, G. Cheng, Opt. Lett. 37, 3138 (2012)

    Article  ADS  Google Scholar 

  16. C. Hnatovsky, V.G. Shvedov, W. Krolikowski, A.V. Rode, Opt. Lett. 35, 3417 (2010)

    Article  ADS  Google Scholar 

  17. V. Jukna, C. Milian, C. Xie, T. Itina, J. Dudley, F. Courvoisier, A. Couairon, Opt. Exp. 22, 25410 (2014)

    Article  ADS  Google Scholar 

  18. J. Durnin, J.J. Miceli, J.H. Eberly, Phys. Rev. Lett. 58, 1499 (1987)

    Article  ADS  Google Scholar 

  19. P. Polesana, A. Dubietis, M.A. Porras, E. Kucinskas, D. Faccio, A. Couairon, P. Di Trapani, Phys. Rev. E 73, 056612 (2006)

    Article  ADS  Google Scholar 

  20. P. Polesana, A. Couairon, D. Faccio, A. Parola, M.A. Porras, A. Dubietis, A. Piskarskas, P. Di Trapani, Phys. Rev. Lett. 99, 223902 (2007)

    Article  ADS  Google Scholar 

  21. D. Faccio, E. Rubino, A. Lotti, A. Couairon, A. Dubietis, G. Tamosauskas, D.G. Papazoglou, S. Tzortzakis, Phys. Rev. A 85, 033829 (2012)

    Article  ADS  Google Scholar 

  22. N.E. Andreev, L.Y. Margolin, I.V. Pleshanov, L.N. Pyatnitskii, Quantum Electron. 28, 910 (1998)

    Article  ADS  Google Scholar 

  23. O. Jedrkiewicz, S. Minardi, A. Couairon, V. Jukna, M. Selva, P. Di Trapani, Plasma absorption evidence via chirped pulse spectral transmission measurements, submitted to Appl. Phys. Lett. (2015)

Download references

Acknowledgments

The authors thank Stefan Osten for technical assistance and Holoeye for the lending of the SLM BB panel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ottavia Jedrkiewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jedrkiewicz, O., Bonanomi, S., Selva, M. et al. Experimental investigation of high aspect ratio tubular microstructuring of glass by means of picosecond Bessel vortices. Appl. Phys. A 120, 385–391 (2015). https://doi.org/10.1007/s00339-015-9200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9200-6

Keywords

Navigation