Skip to main content
Log in

Electrospinning of PVDF nanofibrous membranes with controllable crystalline phases

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Effectively controlling crystalline phases of electrospun polyvinylidene fluoride (PVDF) nanofibers is crucial to produce membranes with special properties for specific applications. Here, the heating treatment during or after electrospinning has been investigated to determine an effective way to control crystalline phase of PVDF nanofibers. By simultaneously controlling the collector temperature and the flow rate during the fiber deposition, a comparatively lower temperature (≤70 °C) is required for obtaining α-, β-, or γ-phase-dominant nanofibrous membranes, whereas a much higher temperature (≥150 °C) is necessary for post-heating of already-deposited fibers. On the other hand, through finely tuning the heating during or after electrospinning, crosslinked nanofibrous membranes can be also obtained, which undoubtedly enhance mechanical performance of the membranes. Therefore, it is hopeful to fabricate high-performance electrospun PVDF nanofibrous membranes with synchronous control of crystalline phases and morphologies, which will further broaden the applications of PVDF materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, J.A. Rogers, Nat. Commun. 4, 1633 (2013)

    Article  ADS  Google Scholar 

  2. L. Persano, C. Dagdeviren, C. Maruccio, L. De Lorenzis, D. Pisignano, Adv. Mater. 26, 7574 (2014)

    Article  Google Scholar 

  3. L. Persano, A. Camposeo, D. Pisignano, Prog. Polym. Sci. 43, 48 (2015)

    Article  Google Scholar 

  4. P. Martins, A. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014)

    Article  Google Scholar 

  5. J. Chang, M. Dommer, C. Chang, L. Lin, Nano Energy 1, 356 (2012)

    Article  Google Scholar 

  6. J. Fang, X. Wang, T. Lin, J. Mater. Chem. 21, 11088 (2011)

    Article  Google Scholar 

  7. C. Chang, V.H. Tran, J. Wang, Y.K. Fuh, L. Lin, Nano Lett. 10, 726 (2010)

    Article  ADS  Google Scholar 

  8. B.J. Hansen, Y. Liu, R. Yang, Z.L. Wang, ACS Nano 4, 3647 (2010)

    Article  Google Scholar 

  9. J. Andrew, D. Clarke, Langmuir 24, 670 (2008)

    Article  Google Scholar 

  10. J. Andrew, D. Clarke, Langmuir 24, 8435 (2008)

    Article  Google Scholar 

  11. M. Li, H.J. Wondergem, M.-J. Spijkman, K. Asadi, L. Katsouras, P.W.M. Blom, D.M. de Leeuw, Nat. Mater. 12, 433 (2013)

    Article  ADS  Google Scholar 

  12. S.J. Kang, I. Bae, J.H. Choi, Y.J. Park, P.S. Jo, Y. Kim, K.J. Kim, J.-M. Myoung, E. Kim, C. Park, J. Mater. Chem. 21, 3619 (2011)

    Article  Google Scholar 

  13. Y.K.A. Low, N. Meenubharathi, N.D. Niphadkar, F.Y.C. Boey, K.W. nG, J. Biomater. Sci. Polym. Ed. 22, 1651 (2011)

    Article  Google Scholar 

  14. E. Cho, C. Kim, J.-K. Kook, Y.I. Jeong, J.H. Kim, Y.A. Kim, M. Endo, C.H. Hwang, J. Memb. Sci. 389, 349 (2012)

    Article  Google Scholar 

  15. T. Lei, X. Cai, X. Wang, L. Yu, X. Hu, G. Zheng, W. Lv, L. Wang, D. Wu, D. Sun, L. Lin, RSC Adv. 3, 24952 (2013)

    Article  Google Scholar 

  16. A. Baji, Y.W. Mai, Q. Li, Y. Liu, Nanoscale 3, 3068 (2011)

    Article  ADS  Google Scholar 

  17. T. Lei, L. Yu, G. Zheng, L. Wang, D. Wu, D. Sun, J. Mater. Sci. 50, 4342 (2015)

    Article  ADS  Google Scholar 

  18. L. Sun, B. Li, Z. Zhang, W. Zhong, Eur. Polym. J. 46, 2112 (2010)

    Article  Google Scholar 

  19. J. Zheng, A. He, J. Li, C. Han, Macromol. Rapid Commun. 28, 2159 (2007)

    Article  Google Scholar 

  20. L. Yu, P. Cebe, Polymer 50, 2133 (2009)

    Article  Google Scholar 

  21. W. Yee, M. Kotaki, Y. Liu, X. Lu, Polymer 48, 512 (2007)

    Article  Google Scholar 

  22. T. Lei, L. Yu, F. Yang, D. Sun, J. Macromol. Sci. Part B 54, 91 (2015)

    Article  Google Scholar 

  23. J. Miao, R.S. Bhatta, D.H. Reneker, M. Tsige, P.L. Taylor, Polymer 56, 482 (2015)

    Article  Google Scholar 

  24. T. Furukawa, Ph Transiti Multinatl J 18, 143 (1989)

    Article  Google Scholar 

  25. T. Lei, Z. Zhan, W. Zuo, W. Cheng, B. Xu, Y. Su, D. Sun, Int. J. Nanomanuf. 8, 294 (2012)

    Article  Google Scholar 

  26. T. Boccaccio, A. Bottino, G. Capannelli, P. Piaggio, J. Memb. Sci. 210, 315 (2002)

    Article  Google Scholar 

  27. M. Kobayashi, K. Tashiro, H. Tadokoro, Macromolecules 8, 158 (1975)

    Article  ADS  Google Scholar 

  28. S. Yoon, A. Prabu, K. Kim, C. Park, Macromol. Rapid Commun. 29, 1316 (2008)

    Article  Google Scholar 

  29. M. Benz, W. Euler, O. Gregory, Macromolecules 35, 2682 (2002)

    Article  ADS  Google Scholar 

  30. A. Lovinger, Science 220, 1115 (1983)

    Article  ADS  Google Scholar 

  31. R. Gregorio Jr, M. Cestari, J. Polym. Sci. Part B Polym. Phys. 32, 859 (1994)

    Article  ADS  Google Scholar 

  32. G. Zhong, L. Zhang, R. Su, K. Wang, H. Fong, L. Zhu, Polymer 52, 2228 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61404059), Fujian Natural Science Foundation (No. 2015J01205), and the Scientific Research Starting Foundation for the Introduction of Talent (No. 13BS404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingping Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, T., Zhu, P., Cai, X. et al. Electrospinning of PVDF nanofibrous membranes with controllable crystalline phases. Appl. Phys. A 120, 5–10 (2015). https://doi.org/10.1007/s00339-015-9197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9197-x

Keywords

Navigation