Skip to main content
Log in

Room-temperature embedment of anatase titania nanoparticles into porous cellulose aerogels

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a facile easy method for room-temperature embedment of anatase titania (TiO2) nanoparticles into porous cellulose aerogels was reported. The obtained anatase TiO2/cellulose (ATC) aerogels were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometer, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, nitrogen adsorption measurements, and thermogravimetric analysis. The results showed that high-purity anatase TiO2 nanoparticles with sizes of 3.69 ± 0.77 nm were evenly dispersed in the cellulose aerogels, which leaded to the significant improvement in specific surface area and pore volume of ATC aerogels. Meanwhile, the hybrid ATC aerogels also had a high loading content of TiO2 (ca. 17.7 %). Furthermore, through a simple photocatalytic degradation test of indigo carmine dye under UV light, ATC aerogels exhibited superior photocatalytic activity and shape stability, which might be useful in some fields like governance of water pollution, and chemical leaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Chujo, Curr. Opin. Solid State Mater. 1, 806 (1996)

    Article  ADS  Google Scholar 

  2. P. Kumar, V.V. Guliants, Microporous Mesoporous Mater. 132, 1 (2010)

    Article  Google Scholar 

  3. V. Dufaud, M.E. Davis, J. Am. Chem. Soc. 125, 9403 (2003)

    Article  Google Scholar 

  4. B.C. Steele, A. Heinzel, Nature 414, 345 (2001)

    Article  ADS  Google Scholar 

  5. R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, J. Am. Chem. Soc. 124, 4974 (2002)

    Article  Google Scholar 

  6. T. Dawsey, C.L. McCormick, Macromolecules 30, 405 (1990)

    Google Scholar 

  7. M.W. Frey, J.A. Cuculo, S.A. Khan, J. Polym. Sci. Polym. Phys. 34, 2375 (1996)

    Article  ADS  Google Scholar 

  8. H. Qi, C. Chang, L. Zhang, Cellulose 15, 779 (2008)

    Article  Google Scholar 

  9. L. Yan, Z. Gao, Cellulose 15, 789 (2008)

    Article  Google Scholar 

  10. J.T. Korhonen, M. Kettunen, R.H. Ras, O. Ikkala, ACS Appl. Mater. Interaces 3, 1813 (2011)

    Article  Google Scholar 

  11. G. Siqueira, J. Bras, A. Dufresne, Polymer 2, 728 (2010)

    Article  Google Scholar 

  12. G. Zheng, Y. Cui, E. Karabulut, L. Wågberg, H. Zhu, L. Hu, MRS Bull. 38, 320 (2013)

    Article  Google Scholar 

  13. J. Cai, S. Kimura, M. Wada, S. Kuga, Biomacromolecules 10, 87 (2008)

    Article  Google Scholar 

  14. J. Zhang, Y. Cao, J. Feng, P. Wu, J. Phys. Chem. C 116, 8063 (2012)

    Article  Google Scholar 

  15. C. Wan, Y. Jiao, Q. Sun, J. Li, Polym. Compos. (2014). doi:10.1002/pc.23276

    Google Scholar 

  16. R.T. Olsson, M.A. Samir, G. Salazar-Alvarez, L. Belova, V. Ström, L.A. Berglund, O. Ikkala, J. Nogues, U.W. Gedde, Nat. Nanotechnol. 5, 584 (2010)

    Article  ADS  Google Scholar 

  17. U. Diebold, Appl. Phys. A 76, 681 (2003)

    Article  ADS  Google Scholar 

  18. D. Dambournet, I. Belharouak, K. Amine, Chem. Mater. 22, 1173 (2009)

    Article  Google Scholar 

  19. T. Peng, D. Zhao, K. Dai, W. Shi, K. Hirao, J. Phys. Chem. B 109, 4947 (2005)

    Article  Google Scholar 

  20. K. Woan, G. Pyrgiotakis, W. Sigmund, Adv. Mater. 21, 2233 (2009)

    Article  Google Scholar 

  21. A.R. Khataee, G.A. Mansoori, Nanostructured Titanium Dioxide Materials: Properties, Preparation and Applications (World Scientific Publishing Co., Singapore, 2011)

    Book  Google Scholar 

  22. B.L. Bischoff, M.A. Anderson, Chem. Mater. 7, 1772 (1995)

    Article  Google Scholar 

  23. S.C. Pillai, P. Periyat, R. George, D.E. McCormack, M.K. Seery, H. Hayden, J. Colreavy, D. Corr, S.J. Hinder, J. Phys. Chem. C 111, 1605 (2007)

    Article  Google Scholar 

  24. J.-N. Nian, H. Teng, J. Phys. Chem. B 110, 4193 (2006)

    Article  Google Scholar 

  25. G. Boschloo, A. Goossens, J. Schoonman, J. Electrochem. Soc. 144, 1311 (1997)

    Article  Google Scholar 

  26. J. Sun, L. Gao, Q. Zhang, J. Am. Ceram. Soc. 10, 1677 (2003)

    Article  Google Scholar 

  27. J. Li, C. Wan, Y. Lu, Q. Sun, Front. Agric. Sci. Eng. 1, 46 (2014)

    Article  Google Scholar 

  28. D. Wu, M. Long, J. Zhou, W. Cai, X. Zhu, C. Chen, Y. Wu, Surf. Coat. Technol. 203, 3728 (2009)

    Article  Google Scholar 

  29. P. Tingaut, T. Zimmermann, G. Sèbe, J. Mater. Chem. 22, 20105 (2012)

    Article  Google Scholar 

  30. T. Kashiwagi, F. Du, K.I. Winey, K.M. Groth, J.R. Shields, S.P. Bellayer, H. Kim, J.F. Douglas, Polymer 46, 471 (2005)

    Article  Google Scholar 

  31. J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Mater. Sci. Eng. A 393, 1 (2005)

    Article  Google Scholar 

  32. B. Liu, A. Khare, E.S. Aydil, Chem. Commun. 48, 8565 (2012)

    Article  Google Scholar 

  33. Y. Jiang, D. Yang, L. Zhang, Q. Sun, X. Sun, J. Li, Z. Jiang, Adv. Funct. Mater. 19, 150 (2009)

    Article  Google Scholar 

  34. B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, M.S. El-Aasser, Langmuir 17, 2664 (2001)

    Article  Google Scholar 

  35. W.-J. Gong, H.-W. Tao, G.-L. Zi, X.-Y. Yang, Y.-L. Yan, B. Li, J.-Q. Wang, Res. Chem. Intermed. 35, 751 (2009)

    Article  Google Scholar 

  36. G.T.S. How, A. Pandikumar, H.N. Ming, L.H. Ngee, Scientific Reports-UK 4 (2014)

  37. P. Wen, H. Itoh, W. Tang, Q. Feng, Langmuir 23, 11782 (2007)

    Article  Google Scholar 

  38. Y. Nishiyama, P. Langan, H. Chanzy, J. Am. Chem. Soc. 124, 9074 (2002)

    Article  Google Scholar 

  39. H. Sehaqui, Q. Zhou, L.A. Berglund, Compos. Sci. Technol. 71, 1593 (2011)

    Article  Google Scholar 

  40. T.Y. Wei, C.Y. Kuo, Y.J. Hsu, S.Y. Lu, Y.C. Chang, Microporous Mesoporous Mater. 112, 580 (2008)

    Article  Google Scholar 

  41. R. Baker, J. Therm. Anal. Calorim. 8, 163 (1975)

    Article  Google Scholar 

  42. A. Tang, Y. Deng, J. Jin, H. Yang, Sci World J. 2012 (2012). doi:10.1100/2012/480527

  43. Q. Yu, P. Wu, P. Xu, L. Li, T. Liu, L. Zhao, Green Chem. 10, 1061 (2008)

    Article  Google Scholar 

  44. H. Wang, W. Zhong, P. Xu, Q. Du, Compos. Part A Appl. Sci. 36, 909 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 31270590 and 31470584).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Additional information

Yue Jiao and Caichao Wan have contributed equally to this work and are considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Wan, C. & Li, J. Room-temperature embedment of anatase titania nanoparticles into porous cellulose aerogels. Appl. Phys. A 120, 341–347 (2015). https://doi.org/10.1007/s00339-015-9192-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9192-2

Keywords

Navigation