Skip to main content
Log in

Influence of intrinsic point defects and antimony impurity on the electronic structure and photoelectric properties of tin monosulfide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electronic structure calculations of defect-free tin monosulfide SnS as well as SnS with existing intrinsic point defects (vacancies in tin (VSn) and sulfur (VS) sublattices), substitutional impurity atoms SbSn and complexes of {VSn–SbSn} type were performed using ab initio density functional theory method in the supercell model. The temperature dependence of stationary photoconductivity and spectral distribution of photosensitivity of SnS crystals doped by antimony were measured in the temperature range of 100–400 K. The results of non-empirical calculations enabled us to analyze the influence of defect formation processes on the macroscopic properties of SnS crystals. It is shown that Sb impurity improves the photoelectric characteristics of SnS crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.I. Bletskan, Crystalline and glassy chalcogenides of Si, Ge, Sn and alloys on their base, vol. 1 (Zakarpattia, Uzhhorod, 2004)

    Google Scholar 

  2. K.T.R. Reddy, N.K. Reddy, R.W. Miles, Photovoltaic properties of SnS based solar cells. Sol. Energy Mater. Sol. Cells 90, 3041–3046 (2006)

    Article  Google Scholar 

  3. M. Gunasekaran, M. Ichimura, Photovoltaic cells based on pulsed electrochemically deposited SnS and photochemically deposited CdS and Cd1−xAxZnxS. Sol. Energy Mater. Sol. Cells 91, 774–778 (2007)

    Article  Google Scholar 

  4. P.D. Antunez, J.J. Buckly, R.L. Brutchey, Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale 3, 2399–2411 (2011)

    Article  ADS  Google Scholar 

  5. C. Clemen, X.I. Saldana, P. Munz, E. Bucher, Photovoltaic properties of some semiconducting layer structures. Phys. Status Solidi. A 49, 437–443 (1978)

    Article  ADS  Google Scholar 

  6. V.F. Gremenok, V.U. Rud’, Y.V. Rud’, S.A. Bashkirov, V.A. Ivanov, Photosensitive thin-film In/p-Pb x Sn1−x S Schottky barriers: creation and properties. Fiz. Tekhn. Poluprovodn. 45, 1084–1089 (2011)

    Google Scholar 

  7. D. Trbojevic, P.M. Nikolic, B. Perovic, V. Cvekic, Photovoltaic detectors in SnS produced by Sb+ ion implantation. Appl. Phys. Lett. 38, 362–365 (1981)

    Article  ADS  Google Scholar 

  8. S.A. Bashkirov, V.F. Gremenok, V.A. Ivanov, V.V. Shevtsova, Microstructure and electrical properties of SnS thin films. Fiz. Tverd. Tela. 54, 2372–2377 (2012)

    Google Scholar 

  9. D.I. Bletskan, V.M. Kabatsii, Y.Y. Madyar, T.A. Sakal, Heterojunctions based on SnS2 and GeS(Se) layered semiconductors, in Proceedings of IV International Scientific-Practical Conference “Modern Information and Electronic Technologies”, (Odessa, Ukraine, 2003), p. 276

  10. A. Sánchez-Juárez, A. Tiburcio-Silver, A. Ortiz, Fabrication of SnS2/SnS heterojunction thin film diodes by plasma-enhanced chemical vapor deposition. Thin Sol. Films. 480–481, 452–456 (2005)

    Article  Google Scholar 

  11. A. Lichanot, S. Gromb, Domaine d’existence du sulfure d’etain et phenomene d’associations des lacunes d’etain. J. Phys. Chem. Solids 32, 1947–1957 (1971)

    Article  ADS  Google Scholar 

  12. W. Albers, C. Haas, H.J. Vink, J.D. Wasscher, Investigation on SnS. J. Appl. Phys. 32, 2220–2225 (1961)

    Article  ADS  Google Scholar 

  13. M. Devika, N.K. Reddy, K. Ramesh, K.R. Gunasekhar, E.S.R. Gopal, K.T.R. Reddy, Low resistive micrometer-thick SnS: Ag films for optoelectronic applications. J. Electrochem. Soc. 153, G727–G733 (2006)

    Article  Google Scholar 

  14. S. Zhang, S. Cheng, Thermally evaporated SnS: Cu thin films for solar cells. Micro & Nano Lett. 6, 559–562 (2011)

    Article  Google Scholar 

  15. M.M. Bletskan, A.A. Grabar, Influence of cation vacancies and antimony impurity on the electronic structure and photoelectric properties of SnS, in Proceedings of CIS Countries Conference on the Crystal Growth, (Kharkov, Ukraine, 2012), p. 170

  16. P. Sinsermsuksakul, R. Chakraborty, S.B. Kim, S.M. Heald, T. Buonassisi, R.G. Gordon, Antimony-doped tin(II) sulfide thin films. Chem. Mater. 24, 4556–4562 (2012)

    Article  Google Scholar 

  17. A. Dussan, F. Mesa, G. Gordillo, Effect of substitution of Sn for Bi on structural and electrical transport properties of SnS thin films. J. Mater. Sci. 45, 2403–2407 (2010)

    Article  ADS  Google Scholar 

  18. F.M. Gashimzade, V.Y. Khartzijev, Energy structure of complex semiconductors. The valence band spectrum of anisotropic compounds of SnS type. Fiz. Tverd. Tela. 4, 434–442 (1962)

    Google Scholar 

  19. A.W. Parke, G.P. Srivastava, The electronic band structure of SnS. Phys. Status Solidi. B 101, K31–K35 (1980)

    Article  ADS  Google Scholar 

  20. F.M. Gashimzade, D.G. Guliev, D.A. Guseinova, V.V. Shtein-Shrayber, Band structure calculation for A4B6 layered crystals by the equivalent-orbital linear combination of atomic orbitals method. J. Phys.: Condens. Matter 4, 1081–1091 (1992)

    ADS  Google Scholar 

  21. A.R.H.F. Ettema, R.A. De Groot, C. Haas, T.S. Turner, Electronic structure of SnS deduced from photoelectron spectra and band-structure calculations. Phys. Rev. B. 46, 7363–7373 (1992)

    Article  ADS  Google Scholar 

  22. Z. Nabi, A. Kellou, S. Méçabih, A. Khalfi, N. Benosman, Opto-electronic properties of rutile SnO2 and orthorhombic SnS and SnSe compounds. Mater. Sci. Eng., B 98, 104–115 (2003)

    Article  Google Scholar 

  23. A. Walsh, G.W. Watson, Influence of the anion on lone pair formation in Sn(II) monochalcogenides: a DFT study. J. Phys. Chem. B. 109, 18868–18875 (2005)

    Article  Google Scholar 

  24. I.V. Slipukhina, D.M. Bercha, Elementary energy bands in isovalent IV–VI orthorhombic and cubic crystals and their solid solutions. Phys. Status Solidi. B 244, 650–668 (2007)

    Article  ADS  Google Scholar 

  25. J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J. Francis, J. Tate, Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl. Phys. Lett. 100, 032104 (2012)

    Article  ADS  Google Scholar 

  26. L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, A. Walsh, Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem. Mater. 25, 4908–4916 (2013)

    Article  Google Scholar 

  27. P.C. Kemeny, J. Azoulay, M. Cardona, L. Ley, Photoelectron spectra of GeS, GeSe, SnS and SnSe and their relation to structural trends and phase transitions within the average-valence-<5> compounds. Nuovo Cimento B. 39, 709–714 (1977)

    Article  ADS  Google Scholar 

  28. M. Taniguchi, R.L. Johnson, J. Ghijsen, M. Cardona, Core excitons and conduction-band structures in orthorhombic GeS, GeSe, SnS, and SnSe single crystals. Phys. Rev. B. 42, 3634–3643 (1990)

    Article  ADS  Google Scholar 

  29. A.G. De La Rocque, E. Belin-Ferré, M.F. Fontaine, C. Senemaud, J. Olivier-Fourcade, J.C. Jumas, X-ray spectroscopy investigation of the electronic SnSx and Li0.57SnS2 compounds. Phil. Mag. B. 80, 1933–1942 (2000)

    Article  ADS  Google Scholar 

  30. R.B. Shalvoy, G.B. Fisher, P.J. Stiles, X-ray photoemission studies of the valence bands of nine IV–VI compounds. Phys. Rev. B. 15, 2021–2024 (1977)

    Article  ADS  Google Scholar 

  31. R. Eymard, A. Otto, Optical and electron-energy-loss spectroscopy of GeS, GeSe, SnS and SnSe single crystals. Phys. Rev. B. 16, 1616–1623 (1977)

    Article  ADS  Google Scholar 

  32. Z.A. Jahangirli, Self-consistent calculations of the electronic structures of deep Sn and S vacancy levels in SnS by the method of Green functions. Zh. Fiz. Khim. 84, 1687–1690 (2010)

    Google Scholar 

  33. W. Wang, K.K. Leung, W.K. Fong, S.F. Wang, Y.Y. Hui, S.P. Lau, Z. Chen, L.J. Shi, C.B. Cao, C. Surya, Molecular beam epitaxy growth of high quality p-doped SnS van der Waals epitaxy on a graphene buffer layer. J. Appl. Phys. 111, 093520 (2012)

    Article  ADS  Google Scholar 

  34. R.D. Kurbanova, A.A. Movsumzade, M.R. Allazov, The SnS–Sb system. Izv. Akad. Nauk SSSR, Neorg. Mat. 23, 1796–1798 (1987)

    Google Scholar 

  35. H. Wiedemeier, H.G. Schnering, Refinement of the structures of GeS, GeSe. SnS and SnSe. Z. Kristallogr. 148, 295–303 (1978)

    Article  ADS  Google Scholar 

  36. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, G. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph Ghosez, J.-Y. Raty, D.C. Allan, First-principle computation of material properties: the ABINIT software project. Comp. Mat. Sci. B. 25, 478–492 (2002)

    Article  Google Scholar 

  37. http://www.abinit.org/

  38. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745–2779 (2002)

    ADS  Google Scholar 

  39. http://departments.icmab.es/leem/siesta/

  40. C. Hartwigsen, S. Goedecker, J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B. 58, 3641–3662 (1998)

    Article  ADS  Google Scholar 

  41. A.P. Lambros, D. Geraleas, N.A. Economou, Optical absorption edge in SnS. J. Phys. Chem. Solids 35, 537–541 (1974)

    Article  ADS  Google Scholar 

  42. G. Valiukonis, D.A. Guseinova, G. Krivaite, A. Šileika, Optical spectra and energy band structure of layer-type AIVBVI compounds. Phys. Status Solidi B 135, 299–307 (1986)

    Article  ADS  Google Scholar 

  43. V.A. Tyagai, V.N. Bondarenko, V.N. Krasiko, D.I. Bletskan, V.I. Sheka, Electroreflectance spectra of germanium and tin monochalcogenides. Fiz. Tverd. Tela. 18, 1433–1436 (1976)

    Google Scholar 

  44. A.G. Milnes, Deep Impurities in Semiconductors (Wiley, New York, 1973)

    Google Scholar 

  45. P. Pyykkö, Refitted tetrahedral covalent radii for solids. Phys. Rev. B. 85, 024115 (2012)

    Article  ADS  Google Scholar 

  46. V.I. Kaidanov, S.A. Nemov, Y.I. Ravich, Self-compensation of electrically active impurities by intrinsic defects in AIVBVI-type semiconductors. Fiz. Tekhn. Poluprovodn. 28, 369–393 (1994)

    Google Scholar 

  47. B.B. Nariya, A.K. Dasadia, M.K. Bhayani, A.J. Patel, A.R. Jani, Electrical transport properties of SnS and SnSe single crystals grown by direct vapour transport technique. Chalcogen. Lett. 6, 549–554 (2009)

    Google Scholar 

  48. R.H. Bube, Photoconductivity of Solids (Wiley, New York, 1960)

    MATH  Google Scholar 

  49. F. Lukeš, J. Humliček, E. Schmidt, Electroreflectance and thermoreflectance spectra of SnS. Sol. State Commun. 45, 445–448 (1983)

    Article  ADS  Google Scholar 

  50. J.M. Chamberline, M. Merdan, Infrared photoconductivity in p-SnS. J. Phys. C: Sol. State Phys. 10, L571–L574 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Bletskan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bletskan, M.M., Bletskan, D.I. & Grabar, A.A. Influence of intrinsic point defects and antimony impurity on the electronic structure and photoelectric properties of tin monosulfide. Appl. Phys. A 120, 321–333 (2015). https://doi.org/10.1007/s00339-015-9190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9190-4

Keywords

Navigation