Skip to main content
Log in

Thermoelectric properties of 50-nm-wide n- and p- type silicon nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For the evaluation of thermoelectric properties in silicon nanowires (SiNWs), thermoelectric test structures are manufactured, including 50-nm-wide n- and p-type SiNWs, micro-heater and temperature sensors using a conventional lithography method on 8 in. silicon wafer. For the optimization of thermoelectric properties in SiNWs, we have evaluated Seebeck coefficients and power factors of n- and p-type SiNWs by varying the nanowire length 10, 40 μm and temperature (from 310 to 450 K). The results show that the maximum Seebeck coefficients and power factors are \(146.37 \,{\upmu} \hbox {V/K}, 1.15\,\times \,10^{3}\, \hbox {W}\,\hbox {m}^{-1}\,\hbox {K}^{-2}, 113.83\; {\upmu} \hbox {V/K}, 0.67\,\times \,10^{3}\, \hbox {W}\,\hbox {m}^{-1}\,\hbox {K}^{-2}\) and \(-113.25\; {\upmu} \hbox {V/K}, 0.59\,\times \,10^{3}\,\hbox {W}\,\hbox {m}^{-1}\,\hbox {K}^{-2}\) for \(10, 40\; {\upmu} \hbox {m}\) long p-type and \(40\; {\upmu}\hbox {m}\) long n-type SiNWs, respectively. The contribution of phonon-drag effect to thermoelectric power is discussed in the highly doped SiNWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Shakouri, Annu. Rev. Mater. Res. 41(1), 399 (2011)

    Article  ADS  Google Scholar 

  2. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, Nat. Nanotechnol. 8, 471 (2013)

    Article  ADS  Google Scholar 

  3. M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, D.R. Clarke, Chem. Mater. 25(15), 2911 (2013)

    Article  Google Scholar 

  4. T.M. Tritt, M.A. Subramanian, MRS Bull. 31, 188 (2006)

    Article  Google Scholar 

  5. D. Rowe, Thermoelectrics Handbook (CRC Pressr, Boca Raton, 2005)

    Book  Google Scholar 

  6. B.M. Curtin, E.A. Codecido, S. Krmer, J.E. Bowers, Nano Lett. 13(11), 5503 (2013)

    Article  ADS  Google Scholar 

  7. H. Ohta, T. Mizuno, S. Zheng, T. Kato, Y. Ikuhara, K. Abe, H. Kumomi, K. Nomura, H. Hosono, Adv. Mater. 24(6), 740 (2012)

    Article  Google Scholar 

  8. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  9. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard III, J.R. Heath, Nature 451, 168 (2008)

    Article  ADS  Google Scholar 

  10. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  11. J.K. Yu, S. Mitrovic, D. Tham, J. Varghese, J.R. Heath, Nature Nanotechnol. 5, 718 (2010)

    Article  ADS  Google Scholar 

  12. J. Tang, H.T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P. Yang, Nano Lett. 10(10), 4279 (2010)

    Article  ADS  Google Scholar 

  13. E. Dechaumphai, D. Lu, J.J. Kan, J. Moon, E.E. Fullerton, Z. Liu, R. Chen, Nano Lett. 14(5), 2448 (2014)

    Article  ADS  Google Scholar 

  14. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  ADS  Google Scholar 

  15. Y. Tian, M.R. Sakr, J.M. Kinder, D. Liang, M.J. MacDonald, R.L.J. Qiu, H.J. Gao, X.P.A. Gao, Nano Lett. 12(12), 6492 (2012)

    Article  ADS  Google Scholar 

  16. A. Boukai, K. Xu, J. Heath, Adv. Mater. 18(7), 864 (2006)

    Article  Google Scholar 

  17. G. Zhang, Y.W. Zhang, Phys. Status Solidi RRL 7(10), 754 (2013)

    Article  Google Scholar 

  18. P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, I. El-Kady, Nano Lett. 11(1), 107 (2011)

    Article  ADS  Google Scholar 

  19. Y. Hyun, Y. Park, W. Choi, J. Kim, T. Zyung, M. Jang, Nanotechnology 23(40), 405707 (2012)

    Article  Google Scholar 

  20. J. Bardeen, W. Shockley, Phys. Rev. 80, 72 (1950)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. M.W. Wu, N.J.M. Horing, H.L. Cui, Phys. Rev. B 54, 5438 (1996)

    Article  ADS  Google Scholar 

  22. C. Herring, Phys. Rev. 96, 1163 (1954)

    Article  ADS  Google Scholar 

  23. H.E. Romero, Ph.D. thesis, Pensylvania State University (2004)

  24. T.H. Geballe, G.W. Hull, Phys. Rev. 98, 940 (1955)

    Article  ADS  Google Scholar 

  25. A.V. Herwaarden, P. Sarro, Sens. Actuators 10(34), 321 (1986)

    Article  Google Scholar 

  26. C. Bulucea, Solid State Electron. 36(4), 489 (1993)

    Article  ADS  Google Scholar 

  27. C. Jacoboni, C. Canali, G. Ottaviani, A.A. Quaranta, Solid State Electron. 20(2), 77 (1977)

    Article  ADS  Google Scholar 

  28. E. Conwell, V.F. Weisskopf, Phys. Rev. 77, 388 (1950)

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by ETRI R&D Program (The title of research project: “Silicide/Silicon hetero-junction structure for thermoelectric device”, 14ZB1310)funded by the Government of Korea. This work was also supported by Hallym University Research Fund, 2014 (HRF-201409-003)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Jang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.J., Choi, W.C., Zyung, T.H. et al. Thermoelectric properties of 50-nm-wide n- and p- type silicon nanowires. Appl. Phys. A 120, 265–269 (2015). https://doi.org/10.1007/s00339-015-9184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9184-2

Keywords

Navigation