Skip to main content
Log in

Analysis of chemical ordering and fragility for Ge–Se–In glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Decreasing the band gap of a material due to metal impurities has been approved through several studies, and this subject is considered as a major area of interest within the optoelectronic applications. Indium-based chalcogenides have been considered good candidates in nonlinear optics due to their ability to transmit in the infrared region. Hence, Ge18Se82 has been alloyed with In. The nature of the chemical ordering of amorphous samples of Ge18Se82−xInx (x = 0, 2, 4 and 6) have been systematically studied. The aim of present investigation is to understand the role of chemical composition and mean-coordination number in determining their structural and physical properties. The compactness, δ, of alloyed samples has been calculated from their measured densities, and values obtained have been interpreted using the topological model proposed to describe the atomic arrangements in these alloys. The variation of the glass transition temperature, T g, with the average coordination number, Z, has been investigated. The compositional dependence of the mean atomic volume, V m, has also been determined. The free volume percentage, FVP, in Ge18Se82−xInx amorphous samples and their fragility indices, m, have been determined to examine the relationship with the mean-coordination number. We have also analyzed the obtained results on the basis of average single bond energy and electronegativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Antipas, E. Mangiorou, E. Hristoforou, Mater. Res. Express 1, 015202 (2014)

    Article  ADS  Google Scholar 

  2. S.S. Fayek, S.S. Fouad, M.R. Balboul, M.S. El-Bana, Phys. B 388, 230–236 (2007)

    Article  ADS  Google Scholar 

  3. A. Herzog, B. Hadad, V. Lyubin, M. Klebanov, A. Reiner, A. Shamir, A.A. Ishaaya, Opt. Lett. 39, 2522–2525 (2014)

    Article  ADS  Google Scholar 

  4. J.A. Brant, D.J. Clark, Y.S. Kim, J.I. Jang, J.-H. Zhang, J.A. Aitken, Chem. Mater. 26, 3045–3048 (2014)

    Article  Google Scholar 

  5. G. Saffarini, J. Saiter, H. Schmitt, Opt. Mater. 29, 1143–1147 (2007)

    Article  ADS  Google Scholar 

  6. A. Stronski, E. Achimova, A. Paiuk, V. Abaskin, A. Meshalkin, A. Prisacar, G. Triduh, O. Lytvyn, J. Non-Cryst. Solids 409, 43–48 (2015)

    Article  ADS  Google Scholar 

  7. A. Seddon, J. Non-Cryst. Solids 184, 44–50 (1995)

    Article  ADS  Google Scholar 

  8. I.D. Aggarwal, J.S. Sanghera, J. Optoelectron. Adv. Mater. 4, 665–678 (2002)

    Google Scholar 

  9. S.S. Fouad, Phys. B 270, 360–365 (1999)

    Article  ADS  Google Scholar 

  10. S. Sharda, N. Sharma, P. Sharma, V. Sharma, J. Non-Cryst. Solids 362, 136–139 (2013)

    Article  ADS  Google Scholar 

  11. M. El-Nahass, M. Ali, I. Zedan, J. Lumin. 151, 143–148 (2014)

    Article  Google Scholar 

  12. Z. Borisova, Glassy Semiconductors (Springer, Plenum Press, New York, 1981)

    Book  Google Scholar 

  13. M. Saxena, A.K. Kukreti, S. Gupta, M.K. Agarwal, N. Rastogi, Arch. Appl. Sci. Res. 4, 994–1001 (2012)

    Google Scholar 

  14. G.S. Antipas, E. Mangiorou, E. Hristoforou, Metals 5, 102–118 (2015)

    Article  Google Scholar 

  15. R. Kumar, A. Kumar, V. Rangra, Optoelec. Adv. Mater. 4, 1554 (2010)

    Google Scholar 

  16. M.S. Kamboj, R. Thangaraj, Eur. Phys. J. Appl. Phys. 24, 33–36 (2003)

    Article  ADS  Google Scholar 

  17. S. Mahadevan, A. Giridhar, J. Non-Cryst. Solids 152, 42–49 (1993)

    Article  ADS  Google Scholar 

  18. G. Saffarini, Appl. Phys. A 74, 283–285 (2002)

    Article  ADS  Google Scholar 

  19. G.S. Antipas, Mater. Res. 17, 1677–1685 (2014)

    Article  Google Scholar 

  20. M. Vlček, M. Frumar, J. Non-Cryst. Solids 97, 1223–1226 (1987)

    ADS  Google Scholar 

  21. E. Savova, E. Skordeva, E. Vateva, J. Phys. Chem. Solids 55, 575–578 (1994)

    Article  ADS  Google Scholar 

  22. E.R. Skordeva, D.D. Arsova, J. Non-Cryst. Solids 192, 665–668 (1995)

    Article  ADS  Google Scholar 

  23. L. Tichý, H. Ticha, Mater. Lett. 21, 313–319 (1994)

    Article  Google Scholar 

  24. V. Bogomolov, Y.A. Firsov, E. Kudinov, D. Mirlin, Phys. Status Solidi (b) 35, 555–558 (1969)

    Article  ADS  Google Scholar 

  25. H.H. Naster, W.D. Kingery, in Proeedings of the Seventh International Conference on Glass, Brussels (Gordon and Breach, New York, 1965), p. 106

  26. A. Maged, L. Wahab, I. El Kholy, J. Mater. Sci. 33, 3331–3335 (1998)

    Article  ADS  Google Scholar 

  27. J.C. Phillips, J. Non-Cryst. Solids 34, 153–181 (1979)

    Article  ADS  Google Scholar 

  28. J. Ledru, J. Saiter, G. Saffarini, S. Benazeth, J. Non-Cryst. Solids 232, 634–637 (1998)

    Article  ADS  Google Scholar 

  29. D. Swiler, A.K. Varshneya, R. Callahan, J. Non-Cryst. Solids 125, 250–257 (1990)

    Article  ADS  Google Scholar 

  30. M.R. Balboul, S.S. Fouad, S.A. Fayek, M.S. El-Bana, J. Alloy. Compd. 460, 570–576 (2008)

    Article  Google Scholar 

  31. J. Saiter, A. Hamou, C. Vautier, J. Non-Cryst. Solids 172, 580–583 (1994)

    Article  ADS  Google Scholar 

  32. G. Saffarini, J. Matthiesen, R. Blachnik, Phys. B 305, 293–297 (2001)

    Article  ADS  Google Scholar 

  33. A. Kumar, M. Husain, S. Swarup, A. Nigam, Phys. B 162, 177–180 (1990)

    Article  ADS  Google Scholar 

  34. A. Saiter, C. Devallencourt, J. Saiter, J. Grenet, Eur. Polym. J. 37, 1083–1090 (2001)

    Article  Google Scholar 

  35. G. Saffarini, A. Saiter, M. Garda, J. Saiter, Phys. B 389, 275–280 (2007)

    Article  ADS  Google Scholar 

  36. C.T. Moynihan, A.J. Easteal, M.A. Bolt, J. Tucker, J. Am. Ceram. Soc. 59, 12–16 (1976)

    Article  Google Scholar 

  37. J.C. Phillips, M. Thorpe, Solid State Commun. 53, 699–702 (1985)

    Article  ADS  Google Scholar 

  38. P. Sharma, S. Katyal, Phys. B 403, 3667–3671 (2008)

    Article  ADS  Google Scholar 

  39. L. Zhenhua, J. Non-Cryst. Solids 127, 298–305 (1991)

    Article  ADS  Google Scholar 

  40. N. Sharma, S. Sharda, V. Sharma, P. Sharma, Chalcogenide Lett. 9, 355–363 (2012)

    Google Scholar 

  41. I. Sharma, S. Tripathi, P. Barman, Phys. B 403, 624–630 (2008)

    Article  ADS  Google Scholar 

  42. L. Pauling, Cornell University, New York, (1976)

  43. L. Tichý, H. Ticha, J. Non-Cryst. Solids 189, 141–146 (1995)

    Article  ADS  Google Scholar 

  44. I. Sharma, S. Tripathi, P. Barman, Phil. Mag. 88, 3081–3092 (2008)

    Article  ADS  Google Scholar 

  45. M. Yamaguchi, Philos. Mag. B 51, 651–663 (1985)

    Article  ADS  Google Scholar 

  46. S.S. Fouad, E.A.A. El-Shazly, M.R. Balboul, S.A. Fayek, M.S. El-Bana, J. Mater. Sci. Mater. Electron. 17, 193–198 (2006)

    Article  Google Scholar 

  47. R.T. Sanderson, J Chem Educ 29(1):539–544 (1952)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. El-Bana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouad, S.S., El-Bana, M.S., Sharma, P. et al. Analysis of chemical ordering and fragility for Ge–Se–In glasses. Appl. Phys. A 120, 137–143 (2015). https://doi.org/10.1007/s00339-015-9180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9180-6

Keywords

Navigation