Skip to main content
Log in

Fabrication and characterization of Ge–Sb–Se–I glasses and fibers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Chalcogenide glasses of the Ge20Sb5Se75−x I x (x = 0, 5, 10, 15, 20 at.%) system were prepared. This study was performed to examine some Ge–Sb–Se–I glass physical and optical properties, the structural evolution of the glass network, and the optical properties of the infrared glass fibers based on our previous studies. The variation process of the glass physical properties, such as transition temperature, glass density, and refractive index, was investigated from the glass of Ge20Sb5Se75 to the Ge20Sb5Se75−x I x glass series. The structural evolutions of these glasses were examined by Raman spectroscopy. The Ge20Sb5Se55I20 composition was selected for the preparation of the IR fiber. The Ge20Sb5Se55I20 glass was purified through distillation, and the intensity of the impurity absorption peaks caused by Ge–O, H2O, and Se–H was reduced or eliminated in the purified glasses. Then, Ge20Sb5Se55I20 chalcogenide glass fiber for mid-infrared transmission was fabricated using high-purity materials. The transmission loss of the Ge20Sb5Se55I20 fiber was greatly reduced compared with that of the Ge20Sb5Se75 glass fiber. The lowest losses obtained were 3.5 dB/m at 3.3 μm for Ge20Sb5Se75I20 fiber, which was remarkably improved compared with 48 dB/m of the unpurified Ge20Sb5Se75 fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. I. Inagawa, T. Yamagishi, T. Yamashita, Jpn. J. Appl. Phys. 30, 2846 (1991)

    Article  ADS  Google Scholar 

  2. D. Wood, J. Tauc, Phys. Rev. B 5, 3144 (1972)

    Article  ADS  Google Scholar 

  3. A.P. Velmuzhov, A.A. Sibirkin, V.S. Shiryaev, M.F. Churbanov, A.I. Suchkov, A.M. Potapov, M.V. Sukhanov, V.G. Plotnichenko, V.V. Koltashev, A.D. Plekhovich, J. Non-Cryst. Solids. 405, 100 (2014)

    Article  ADS  Google Scholar 

  4. J. Savage, S. Nielsen, Infrared Phys. Technol. 5, 195 (1965)

    Article  ADS  Google Scholar 

  5. C. Moynihan, P. Macedo, M. Maklad, R. Mohr, R. Howard, J. Non-Cryst. Solids 17, 369 (1975)

    Article  ADS  Google Scholar 

  6. S. Danto, P. Houizot, C. Boussard-Pledel, X.H. Zhang, F. Smektala, J. Lucas, Adv. Funct. Mater. 16, 1847 (2006)

    Article  Google Scholar 

  7. H. Wang, G. Yang, Y. Xu, X. Zhang, Z. Gu, G. Chen, J. Chin. Ceram. Soc. 35, 922 (2007)

    Google Scholar 

  8. S.M. El-sayed, H.M. Saad, G.A. Amin, F.M. Hafez, M. Abd-El-Rahman, J. Phys. Chem. Solids 68, 1040 (2007)

    Article  ADS  Google Scholar 

  9. A.S. Soltan, M. Abu El-Oyoun, A.A. Abu-Sehly, A.Y. Abdel-Latief, Mater. Chem. Phys. 82, 101 (2003)

    Article  Google Scholar 

  10. V. Sadagopan, H.C. Gatos, Solid State Electron. 8, 529 (1965)

    Article  ADS  Google Scholar 

  11. T. Kanamori, Y. Terunuma, S. Takahashi, T. Miyashita, J. Lightwave Technol. 2, 607 (1984)

    Article  ADS  Google Scholar 

  12. S. El-Sayed, Semicond. Sci. Tech. 18, 337 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Goyal, A. Maan, J. Non-Cryst. Solids 183, 182 (1995)

    Article  ADS  Google Scholar 

  14. W. Chen, J. Am. Ceram. Soc. 91, 1686 (2008)

    Article  Google Scholar 

  15. J. Holubova, Z. Černošek, E. Černošková, Optoelectron. Adv. Mater. 1, 663 (2007)

    Google Scholar 

  16. Z. Ivanova, E. Cernoskova, V. Vassilev, S. Boycheva, Mater. Lett. 57, 1025 (2003)

    Article  Google Scholar 

  17. K. Hachiya, J. Non-Cryst. Solids 321, 217 (2003)

    Article  ADS  Google Scholar 

  18. D. Vanderbilt, J. Joannopoulos, Phys. Rev. B 23, 2596 (1981)

    Article  ADS  Google Scholar 

  19. T. Kanamori, Y. Terunuma, S. Takahashi, T. Miyashita, J. Non-Cryst. Solids 69, 231 (1985)

    Article  ADS  Google Scholar 

  20. W. Lacourse, V. Twaddell, J. Mackenzie, J. Non-Cryst. Solids 3, 234 (1970)

    Article  ADS  Google Scholar 

  21. J.S. Sanghera, V.Q. Nguyen1, P.C. Pureza, F.H. Kung, F. Miklos, L. Busse, I.D. Aggarwal, in SPIE’s 1994 International Symposium on Optics, Imaging, and Instrumentation, p. 89 (1994)

  22. I. Haruvi-Busnach, J. Dror, N.I. Croitoru, in Proceedings SPIE 1228 , Infrared Fiber Optics II, p. 85 (1990)

  23. N. Croitoru, N. Shamir, J. Lightwave Technol. 5, 1637 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (Grant Nos. 61435009, 61377099, and 61177087), the National Program on Key Basic Research Project (973 Program) (Grant No. 2012CB722703), the International Science and Technology Cooperation Program of China (Grant No. 2011DFA12040), the Scientific Research Fund of Zhejiang Provincial Education Department (R1101263), the Natural Science Foundation of Ningbo (Grant No. 2013A610118), the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, P.R.C. Ningbo Optoelectronic Materials and Devices Creative Team (2009B21007), the Scientific Research Foundation of the Graduate School of Ningbo University, and the K. C. Wong Magna Fund of Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunsi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Cheng, C., Zhu, Q. et al. Fabrication and characterization of Ge–Sb–Se–I glasses and fibers. Appl. Phys. A 120, 127–135 (2015). https://doi.org/10.1007/s00339-015-9179-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9179-z

Keywords

Navigation