Skip to main content
Log in

Improvement in R off/R on ratio and reset current via combining compliance current with multilayer structure in tantalum oxide-based RRAM

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Improvements in the R off/R on ratio and reset current are required prior to the practical application of RRAM. To achieve this improvement, tantalum oxide-based RRAM devices with multilayer structure (bi-layer and tri-layer) were fabricated and various compliance currents were adopted. The reset current of 40 µA was observed; the R off/R on ratio increased to more than 20 in the tri-layer structure device. Resistance changes in two types of devices under voltage pulses with different pulse width were also conducted. The tri-layer device exhibited lower reset voltage and higher R off/R on ratio than the bi-layer device under voltage pulses. X-ray photoelectron spectroscopy demonstrated the formation of Ta2O5 via plasma oxidation, and there was an oxygen gradient in the multilayer devices. The results demonstrated that the tri-layer structure with oxygen gradient was an effective method for achieving better device performance. Additionally, it is implied that reasonable control of the proportion of TaO2 and Ta2O5 and compliance current can improve device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang, Rep. Prog. Phys. 75, 076502 (2012)

    Article  ADS  Google Scholar 

  2. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632–2663 (2009)

    Article  Google Scholar 

  3. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, K. Kim, Nat. Mater. 10, 625–630 (2011)

    Article  ADS  Google Scholar 

  4. H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Proc. IEEE 100, 1951–1970 (2012)

    Article  Google Scholar 

  5. D. Jana, S. Maikap, A. Prakash, Y.-Y. Chen, H.-C. Chiu, J.-R. Yang, Nanoscale Res. Lett. 9, 12 (2014)

    Article  Google Scholar 

  6. V. Sriraman, X. Li, N. Singh, S. Lee, IEEE Electron Device Lett. 33, 1060–1062 (2012)

    Article  ADS  Google Scholar 

  7. Y.S. Chen, H.-Y. Lee, P.-S. Chen, W.-S. Chen, K.-H. Tsai, P.Y. Gu, T.-Y. Wu, C.-H. Tsai, S.Z. Rahaman, Y.-D. Lin, F. Chen, M.-J. Tsai, T.-K. Ku, IEEE Electron Device Lett. 35, 202 (2014)

    Article  Google Scholar 

  8. A. Prakash, S. Maikap, H.-C. Chiu, T.-C. Tien, C.-S. Lai, Nanoscale Res. Lett. 9, 125 (2014)

    Article  ADS  Google Scholar 

  9. B. Chakrabarti, R.V. Galatage, E.M. Vogel, IEEE Electron Device Lett. 34, 867–869 (2013)

    Article  ADS  Google Scholar 

  10. Y. Wang, Q. Lin, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhnag, Y. Li, Q. Zuo, J. Yang, M. Liu, Nanotechnology 21, 045202 (2010)

    Article  ADS  Google Scholar 

  11. H.Y. Lee, P.S. Chen, C.C. Wang, P.J. Tzeng, C.H. Lin, F. Cheng, C.H. Lien, M.-J. Tsai, International Electron Device Meeting (2008)

  12. J.J. Yang, M.X. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, Appl. Phys. Lett. 97, 232102 (2010)

    Article  ADS  Google Scholar 

  13. S.M. Sadaf, X. Liu, M. Son, S. Park, S.H. Choudhury, E. Cha, M. Siddik, J. Shin, H. Hwang, Phys. Status Solid. A Appl. Mater. Sci. 209, 1179–1183 (2012)

    Article  ADS  Google Scholar 

  14. J.H. Hur, M.-J. Lee, C.B. Lee, Y.-B. Kim, C.-J. Kim, Phys. Rev. B 82, 155321 (2010)

    Article  ADS  Google Scholar 

  15. Y. Yang, S. Choi, W. Lu, Nano Lett. 13, 2908–2915 (2013)

    Article  ADS  Google Scholar 

  16. Z. Fang, H. Yu, X. Li, N. Singh, G.Q. Lo, D.L. Kwong, IEEE Electron Device Lett. 32, 566–568 (2011)

    Article  ADS  Google Scholar 

  17. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, J. Hur, S.-E. Ahn, M. Chang, Y.-B. Kim, U.-I. Chung, C.-J. Kim, D.-S. Kim, H. Lee, IEEE Electron Device Lett. 31, 725 (2010)

    Article  ADS  Google Scholar 

  18. A.C. Torrezan, J.P. Strachan, G.M. Ribeiro, R.S. Williams, Nanotechnology 22, 485203 (2011)

    Article  Google Scholar 

  19. A. Prakash, D. Jana, S. Maikap, Nanoscale Res. Lett. 8, 418 (2013)

    Article  ADS  Google Scholar 

  20. X. Chen, W. Hu, S. Wu, D. Bao, Appl. Phys. Lett. 104, 043508 (2014)

    Article  ADS  Google Scholar 

  21. C.B. Lee, D.S. Lee, A. Benayad, S.R. Lee, M. Chang, M.-J. Lee, J. Hur, Y.B. Kim, C.J. Kim, U.-I. Chung, IEEE Electron Device Lett. 26, 399–401 (2011)

    Article  ADS  Google Scholar 

  22. Y.-C. Chen, Y.-L. Chung, B.-T. Chen, W.-C. Chen, J.-S. Chen, J. Phys. Chem. C 117, 5758–5764 (2013)

    Article  Google Scholar 

  23. A. Prakash, S. Maikap, C.S. Lai, T.C. Tien, W.S. Chen, H.Y. Lee, F.T. Chen, M.-J. Kao, M.-J. Tsai, Solid State Electron. 77, 35–40 (2012)

    Article  ADS  Google Scholar 

  24. H.K. Yoo, S.B. Lee, J.S. Lee, S.H. Chang, M.J. Yoon, Y.S. Kim, B.S. Kang, M.-J. Lee, C.J. Kim, B. Kahng, T.W. Noh, Appl. Phys. Lett. 98, 183507 (2011)

    Article  ADS  Google Scholar 

  25. http://srdata.nist.gov/xps/selEnergyType.aspx

  26. Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, M. Oshima, IEEE International Electron Devices Meeting 2008, Technical Digest

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Feng, J. Improvement in R off/R on ratio and reset current via combining compliance current with multilayer structure in tantalum oxide-based RRAM. Appl. Phys. A 120, 67–73 (2015). https://doi.org/10.1007/s00339-015-9170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9170-8

Keywords

Navigation