Skip to main content
Log in

Synthesis and microwave-absorbing properties of Co3Fe7@C core–shell nanostructure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Co3Fe7@C core–shell nanoparticles with high performance of microwave-absorbing properties were prepared by hydrothermal method and heat treatment. The transformation of structural, morphological and magnetic properties among the carbon-encapsulated composites, which were annealed at three different temperatures, were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). XRD analysis indicated the phase composition of Co3Fe7/CoFe2O4, Fe3C/Co3Fe7 and pure Co3Fe7 at different annealing temperatures. TEM confirmed the Co3Fe7@graphite core–shell nanostructure with an average particle size of 180 nm. The saturation magnetization (M s) increased monotonically with the increase in temperature, which was attributed to the crystal growth and purity of metallic core. Co3Fe7@graphite nanoparticles exhibited the hysteretic loops of soft ferromagnetic behavior with high M s of 222.85 emu g−1, weak remanent magnetization (M r) and coercivity (H c). For Co3Fe7@graphite nanomaterial, a reflection loss exceeding −20 dB was obtained between 2.8 and 10.2 GHz, which almost covering from S-band to X-band. The maximum reflection loss is −26.8 dB at 9 GHz with 1.8 mm thickness. The excellent microwave absorption properties result from the proper electromagnetic match in core–shell nanostructure and the strong natural ferromagnetic resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.S.S. Afghahi, A. Shokuhfar, J. Magn. Magn. Mater. 370, 37 (2014)

    Article  ADS  Google Scholar 

  2. Z. Han, D. Li, H. Wang et al., Appl. Phys. Lett. 95, 023114 (2009)

    Article  ADS  Google Scholar 

  3. X.F. Zhang, X.L. Dong, H. Huang et al., Appl. Phys. Lett. 89, 053115 (2006)

    Article  ADS  Google Scholar 

  4. W.S. Seo, J.H. Lee, X. Sun et al., Nat. Mater. 5, 971 (2006)

    Article  ADS  Google Scholar 

  5. C. Sun, J.S.H. Lee, M. Zhang, Adv. Drug. Deliver. Rev. 60, 1252 (2008)

    Article  Google Scholar 

  6. X. Liu, S.W. Or, S.L. Ho et al., J. Alloy. Compd. 509, 9071 (2011)

    Article  Google Scholar 

  7. X.G. Liu, Z.Q. Ou, D.Y. Geng et al., Carbon 48, 891 (2010)

    Article  Google Scholar 

  8. K.E. Neo, Y.Y. Ong, H.V. Huynh et al., J. Mater. Chem. 17, 1002 (2007)

    Article  Google Scholar 

  9. M.H. Teng, S.W. Tsai, C.I. Hsiao et al., J. Alloy. Compd. 434, 678 (2007)

    Article  Google Scholar 

  10. A. Ebara, K. Kuramochi, T. Yamazaki et al., Carbon 45, 898 (2007)

    Article  Google Scholar 

  11. Z.H. Wang, Z.D. Zhang, C.J. Choi et al., J. Alloy. Compd. 361, 289 (2003)

    Article  Google Scholar 

  12. A.A. El-Gendy, E.M.M. Ibrahim, V.O. Khavrus et al., Carbon 47, 2821 (2009)

    Article  Google Scholar 

  13. J.N. Wang, L.I. Zhang, F. Yu et al., J. Phys. Chem. B 111, 2119 (2007)

    Article  Google Scholar 

  14. J.B. Park, S.H. Jeong, M.S. Jeong, Carbon 46, 1369 (2008)

    Article  Google Scholar 

  15. C. Cao, Z. Ma, C. Ma et al., Mater. Lett. 88, 61 (2012)

    Article  Google Scholar 

  16. M. Bystrzejewski, M. Arulepp, J. Leis, Mater. Lett. 63, 1435 (2009)

    Article  Google Scholar 

  17. W. Wu, Z. Zhu, Z. Liu, Carbon 41, 317 (2003)

    Article  Google Scholar 

  18. U. Narkiewicz, M. Podsiadły, R. Jędrzejewski, Appl. Catal. A-Gen. 384, 27 (2010)

    Article  Google Scholar 

  19. Y. Xiong, J. Ye, X. Gu, J. Magn. Magn. Mater. 320, 107 (2008)

    Article  ADS  Google Scholar 

  20. W. Li, X. Qiao, Q. Zheng et al., J. Alloy. Compd. 509, 6206 (2011)

    Article  Google Scholar 

  21. S.R. Dhakate, R.B. Mathur, O.P. Bahl, Carbon 35, 1753 (1997)

    Article  Google Scholar 

  22. C. Julien, M. Massot, C. Pérez-Vicente, Mater. Sci. Eng. B 75, 6 (2000)

    Article  Google Scholar 

  23. R.D. Waldron, Phys. Rev. 99, 1727 (1995)

    Article  ADS  Google Scholar 

  24. H.J. Grabke, Carburization: A High Temperature Corrosion Phenomenon (Elsevier, Amsterdam, 1998)

    Google Scholar 

  25. V. Raghavan, G.V. Raynor, V.G. Rivlin, Phase Diagrams of Ternary Iron Alloys (Indian Institute of Metals, Calcutta, 1987)

    Google Scholar 

  26. T.Y. Kosolapova, Carbides: Properties, Production, and Applications, 3rd edn. (Plenum Press, New York, 1971)

    Google Scholar 

  27. E. Pippel, J. Woltersdorf, H.J. Grabke, Mater. Corros. 54, 747 (2003)

    Article  Google Scholar 

  28. E. Pippel, J. Woltersdorf, R. Schneider, Mater. Corros. 49, 309 (1998)

    Article  Google Scholar 

  29. H.J. Grabke, Mater. Corros. 49, 303 (1998)

    Article  Google Scholar 

  30. S. Tomita, M. Hikita, M. Fujii, Chem. Phys. Lett. 316, 361 (2000)

    Article  ADS  Google Scholar 

  31. A. Tsuzuki, S. Sago, S.I. Hirano et al., J. Mater. Sci. 19, 251 (1984)

    Google Scholar 

  32. X.G. Liu, D.Y. Geng, J. Du, Scr. Mater. 59, 340 (2008)

    Article  Google Scholar 

  33. C.Q. Sun, Prog. Solid State Chem. 35, 1 (2007)

    Article  Google Scholar 

  34. X.G. Liu, D.Y. Geng, H. Meng, J. Appl. Phys. 41, 175001 (2008)

    Google Scholar 

  35. T. Sourmail, Prog. Mater Sci. 50, 816 (2005)

    Article  Google Scholar 

  36. Z.B. Li, Y.D. Deng, B. Shen et al., J. Phys. D Appl. Phys. 42, 145002 (2009)

    Article  ADS  Google Scholar 

  37. X.Q. Shen, F.Z. Song, Y. Chen et al., J. Compos. Mater. 46, 71 (2011)

    Article  Google Scholar 

  38. M.J. Pierre, A. Oliver, Appl. Phys. Lett. 80, 4404 (1996)

    Google Scholar 

  39. T. Sourmail, Prog. Mater. Sci. 50, 816 (2005)

    Article  Google Scholar 

  40. T. Wang, H. Wang, X. Chi et al., Carbon 74, 312 (2014)

    Article  Google Scholar 

  41. C. Kittel, Phys. Rev. 73, 155 (1948)

    Article  ADS  Google Scholar 

  42. Y. Naito, K. Suetake, IEEE Trans Microw Theory 19, 65 (1971)

    Article  Google Scholar 

  43. W.L. Zuo, L. Qiao, X. Chi et al., J. Alloy. Compd. 509, 6359 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the State Key Laboratory of Explosion Science and Technology, BIT, PR China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Jing Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X.D., Qiao, X.J., Ren, Q.G. et al. Synthesis and microwave-absorbing properties of Co3Fe7@C core–shell nanostructure. Appl. Phys. A 120, 43–52 (2015). https://doi.org/10.1007/s00339-015-9164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9164-6

Keywords

Navigation