Skip to main content
Log in

Experimental investigation on wetting process of water droplets on micro-/nanoporous copper films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the dynamics of contact angle and droplet spreading were combined to study wetting process of droplet on porous media, revealing comprehensive information about surface spreading and internal spreading of the droplet. To precisely locate the precursor rim in the droplet spreading test, background subtraction method was proposed for use in visualizing the precursor rim. Two types of micro-/nanoporous copper films fabricated by an electrochemical deposition method were tested. The results indicated that contact angle of the micro-/nanoporous copper films decreased with time quickly and became 0° at last, which is a result of surface spreading combined with down-absorption. The dynamic of precursor rim velocity which can reflect the kinetics of internal spreading was divided into three stages: friction dominant stage, balance stage and exhausting stage. In the friction dominant stage, the velocity of precursor rim can be described by an exponential law, while the velocity of precursor rim in balance stage, which is only affected by the internal characteristics of porous media, was proposed to compare internal wettability of porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Liu, H. Cheng, P. Cui, Appl. Surf. Sci. (2013). doi:10.1016/j.apsusc.2013.12.036

    Google Scholar 

  2. J. Su, F. Gao, Z. Gu, M. Pien, H. Sun, Sens. Actuat. B 181, 57–64 (2013)

    Article  Google Scholar 

  3. C.G. Ching, S.C. Lee, P.K. Ooi, S.S. Ng, Z. Hassan, H.A. Hassan, M.J. Abdullah, Mater. Sci. Eng. B-Adv. 178, 956–959 (2013)

    Article  Google Scholar 

  4. W. Yuan, Y. Tang, X. Yang, Z. Wan, Appl. Energy 94, 309–329 (2012)

    Article  ADS  Google Scholar 

  5. S. Ghosh, J. Magn. Magn. Mater. 323, 552–556 (2011)

    Article  ADS  Google Scholar 

  6. J. Tang, Y. Yi, J. Wu, Y. Tang, Phys. B-Chem. 433, 138–143 (2014)

    ADS  Google Scholar 

  7. Y. Tang, B. Tang, J. Qing, Q. Li, L. Lu, Appl. Surf. Sci. 258, 8747–8751 (2012)

    Article  ADS  Google Scholar 

  8. B.J. Zhang, K.J. Kim, H. Yoon, Int. J. Heat Mass Transf. 55, 7487–7498 (2012)

    Article  Google Scholar 

  9. H.S. Ahn, G. Park, J.M. Kim, J. Kim, M.H. Kim, Exp. Therm. Fluid Sci. 42, 187–195 (2012)

    Article  Google Scholar 

  10. H.T. Phan, N. Caney, P. Marty, S. Colasson, J. Gavillet, Int. J. Heat Mass Transf. 52, 5459–5471 (2009)

    Article  Google Scholar 

  11. Y. Tang, D. Deng, L. Lu, M. Pan, Q. Wang, Exp. Therm. Fluid Sci. 34, 190–196 (2010)

    Article  Google Scholar 

  12. D.B. Jazia, L. Vonna, S. Knopf, G. Schrodj, H. Nouali, B. Lebeau, Y. Holl, H. Haidara, Colloid Surf. A 436, 363–370 (2013)

    Article  Google Scholar 

  13. S. Kirdponpattara, M. Phisalaphong, B.Z. Newby, J. Colloid Interface Sci. 397, 169–176 (2013)

    Article  Google Scholar 

  14. C. Byon, S.J. Kim, Int. J. Heat Mass Transf. 55, 4096–4103 (2012)

    Article  Google Scholar 

  15. H. S. Ahn, G. Park, J. Kim, M.H. Kim, Langmuir 28, 2614–2619 (2012)

    Article  Google Scholar 

  16. D. H. Shin, T. Shokuhfar, C.K. Choi, S. Lee, C. Friedrich, Nanotechnology 22, 315704 (2011)

    Article  ADS  Google Scholar 

  17. M.A. Apel-Paz Meirav, Colloid Surf. A 146, 273–279 (1999)

    Article  Google Scholar 

  18. V.M. Starov, S.R. Kosvintsev, V.D. Sobolev, M.G. Velarde, S.A. Zhdanov, J. Colloid Interface Sci. 246, 372–379 (2002)

    Article  Google Scholar 

  19. H. C. Shin, J. Dong, M. Liu, Adv. Mater. 19, 1610–1614 (2003)

    Article  Google Scholar 

  20. H. Shin, M. Liu, Chem. Mater. 16, 5460–5464 (2004)

    Article  Google Scholar 

  21. Z. Feng, C.R. Marks, A. Barkatt, Oxid. Met. 60, 393–408 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The present research was supported by the National Natural Science Foundation of China (Nos. 51275098, 51405165 and 51375175) and the Fundamental Research Funds for the Central universities, SCUT (2013ZZ017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longsheng Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, L., Lu, L., Fu, T. et al. Experimental investigation on wetting process of water droplets on micro-/nanoporous copper films. Appl. Phys. A 120, 255–263 (2015). https://doi.org/10.1007/s00339-015-9162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9162-8

Keywords

Navigation