Skip to main content
Log in

IR absorption and linear dichroism in BiFe0.5Co0.5O3 films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The optical density spectra D() of BiFe0.5Co0.5O3 films with thickness d = 230 and 1400 nm on LaAlO3 substrate were studied in the infrared range from 0.09 to 1.65 eV in unpolarized and linear polarized light at room temperature and at T = 80 K in the magnetic field of 4.5 kOe and without the field. The absorption bands at ~0.2 and ~0.7 eV are revealed in the D() spectra recorded in unpolarized light and attributed to combination of two-phonon and two-magnon absorption and to dd transitions in Fe or Co ions, respectively. In the D() spectra of BiFe0.5Co0.5O3 film with d = 230 nm recorded in linear polarized light, the additional bands in the range of 0.3 eV–1.0 eV are found and explained by the nonuniform charge state due to the existence of weakly conductive electric domains and domain walls with higher conductivity and by the scattering of the light on the domains. The position of the bands in the optical density spectra in polarized light D () and D ∣∣() depends on the direction of the magnetic field relative to the film and on the temperature, which is explained by the change of the electric domain sizes. The revealed dependence of the optical properties on the magnetic field direction allows recommending BiFe0.5Co0.5O3 films as new functional magneto-optical material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  ADS  Google Scholar 

  2. A.P. Pyatakov, A.K. Zvezdin, Phys. Usp. 55, 557 (2012)

    Article  ADS  Google Scholar 

  3. G. Lawes, G. Srinivasan, J. Phys. D Appl. Phys. 44, 243001 (2011)

    Article  ADS  Google Scholar 

  4. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  ADS  Google Scholar 

  5. D. Sando, A. Barthelemy, M. Bibes, J. Phys. Condens. Matter. 26, 473201 (2014)

    Article  ADS  Google Scholar 

  6. I. Sosnowska, T. Peterlin-Neumaier, E. Steichele, J. Phys. C Solid State Phys. 15, 4835 (1982)

    Article  ADS  Google Scholar 

  7. Y. Li, Y. Fan, H. Zhang, X. Teng, X. Dong, H. Liu, X. Ge, Q. Li, W. Chen, X. Li, Z. Ge, J. Supercond. Nov. Magn. 27, 1239 (2014)

    Article  Google Scholar 

  8. P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V.M. Naik, M.B. Sahana, C. Sudakar, R. Naik, M.S.R. Rao, G. Lawes, J. Phys. Condens. Matter. 21, 036001 (2009)

    Article  ADS  Google Scholar 

  9. S.R. Shannigrahi, A. Huang, N. Chandrasekhar, D. Tripathy, A.O. Adeyeye, Appl. Phys. Lett. 90, 022901 (2007)

    Article  ADS  Google Scholar 

  10. V.G. Prokhorov, G.G. Kaminsky, J.M. Kim, T.W. Eom, J.S. Park, Y.P. Lee, V.L. Svetchnikov, G.G. Levtchenko, YuM Nikolaenko, V.A. Khokhlov, Fizika Nizkikh Temperatur 37, 161 (2011)

    Google Scholar 

  11. H. Naganuma, J. Miura, S. Okamura, Appl. Phys. Lett. 93, 052901 (2008)

    Article  ADS  Google Scholar 

  12. H. Naganuma, S. Yasui, K. Nishida, T. Iijima, H. Funakubo, S. Okamura, J. Appl. Phys. 109, 07D917 (2011)

    Google Scholar 

  13. A.A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, S. Niitaka, M. Azuma, Y. Shimakawa, M. Takano, F. Izumi, E. Takayama-Muromachi, Chem. Mater. 18, 798 (2006)

    Article  Google Scholar 

  14. S. Yasui, M. Nakajima, H. Naganuma, S. Okamura, K. Nishida, T. Yamamoto, T. Iijima, M. Azuma, H. Morioka, K. Saito, M. Ishikawa, T. Yamada, H. Funakubo, J. Appl. Phys. 105, 061620 (2009)

    Article  ADS  Google Scholar 

  15. Y. Nakamura, M. Kawai, M. Azuma, M. Kubota, M. Shimada, T. Aiba, Y. Shimakawa, Mater. Sci. Eng. 18, 092017 (2011)

    Google Scholar 

  16. O. Diegues, J. Iniguez, Phys. Rev. Lett. 107, 057601 (2011)

    Article  ADS  Google Scholar 

  17. A. Kumar, R.C. Rai, N.J. Podraza, S. Denev, M. Ramirez, Y.-H. Chu, L.W. Martin, J. Ihlefeld, T. Heeg, J. Schubert, D.G. Schlom, J. Orenstein, R. Ramesh, R.W. Collins, J.L. Musfeldt, V. Gopalan, Appl. Phys. Lett. 92, 121915 (2008)

    Article  ADS  Google Scholar 

  18. H. Shima, K. Nishida, T. Yamamoto, T. Tadokoro, K. Tsutsumi, M. Suzuki, H. Naganuma, J. Appl. Phys. 113, 17A914 (2013)

    Article  Google Scholar 

  19. S. Kamba, D. Nuzhnyy, M. Savinov, J. Šebek, J. Petzelt, J. Prokleška, R. Haumont, J. Kreisel, Phys. Rev. B 75, 024403 (2007)

    Article  ADS  Google Scholar 

  20. M.O. Ramirez, A. Kumar, S.A. Denev, N.J. Podraza, X.S. Xu, R.C. Rai, Y.H. Chu, J. Seidel, L.W. Martin, S.-Y. Yang, E. Saiz, J.F. Ihlefeld, S. Lee, J. Klug, S.W. Cheong, M.J. Bedzyk, O. Auciello, D.G. Schlom, R. Ramesh, J. Orenstein, J.L. Musfeldt, V. Gopalan, Phys. Rev. B 79, 224106 (2009)

    Article  ADS  Google Scholar 

  21. M. Cazayous, A. Sacuto, D. Lebeugle, D. Colson, Eur. Phys. J. B 67, 209 (2009)

    Article  ADS  Google Scholar 

  22. X.S. Xu, T.V. Brinzari, S. Lee, Y.H. Chu, L.W. Martin, A. Kumar, S. McGill, R.C. Rai, R. Ramesh, V. Gopalan, S.W. Cheong, J.L. Musfeldt, Phys. Rev. B 79, 134425 (2009)

    Article  ADS  Google Scholar 

  23. L. Penga, H. Dengb, J. Tiana, Q. Rena, C. Penga, Z. Huanga, P. Yanga, J. Chu, Appl. Surf. Sci. 268, 146 (2013)

    Article  ADS  Google Scholar 

  24. Y. Xu, M. Shen, Mater. Lett. 62, 3600 (2008)

    Article  Google Scholar 

  25. A. Kumar, R.C. Rai, N.J. Podraza, S. Denev, M. Ramirez, Y.-H. Chu, L.W. Martin, J. Ihlefeld, T. Heeg, J. Schubert, D.G. Schlom, J. Orenstein, R. Ramesh, R.W. Collins, J.L. Musfeldt, V. Gopalan, Appl. Phys. Lett. 92, 121915 (2008)

    Article  ADS  Google Scholar 

  26. E. Gan’shina, N. Loshkareva, Y. Sukhorukov, E. Mostovshchikova, A. Vinogradov, L. Nomerovannaya, JMMM 300, 62 (2006)

    Article  ADS  Google Scholar 

  27. H.-X. Lu, X.-Y. Mao, W. Wang, X.-B. Chen, Piers 2008 Hangzhou: Progress In Electromagnetics Research Symposium, Vols I And Ii, Proceedings, p. 1093

  28. F. Lucari, C. Mastrogiuseppe, G. Tomassetti, J. Phys. C Solid State Phys. 10, 4896 (1977)

    Article  Google Scholar 

  29. M.N. Taran, M.D. Dyar, S.S. Matsyuk, Am. Mineral. 92, 753 (2007)

    Article  Google Scholar 

  30. S.K. Jaiswal, J. Kumar, J. Alloys Compd. 509, 3859 (2011)

    Article  Google Scholar 

  31. J. Seidel, G. Singh-Bhalla, Q. He, S.-Y. Yang, Y.-H. Chu, R. Rames, Phase Transit. 86, 53 (2013)

    Article  Google Scholar 

  32. M. Schmid, P. Andrae, P. Manley, Nanoscale Res. Lett. 9, 50 (2014)

    Article  ADS  Google Scholar 

  33. T.H. Kim, S.H. Baek, S.M. Yang, S.Y. Jang, D. Ortiz, T.K. Song, J.-S. Chung, C.B. Eom, T.W. Noh, J.-G. Yoon, Appl. Phys. Lett. 95, 262902 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work is performed in the frameworks of the Program of Fundamental Research “Spin” No. 01201463330, supported by the Project No. 15-9-2-4 of the Presidium of Ural Division of Russian Academy of Science “Fundamentals of technology of nanostructures and nanomaterials” and by the Grant No. 14-02-00432 of Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Mostovshchikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostovshchikova, E.V., Loshkareva, N.N., Naumov, S.V. et al. IR absorption and linear dichroism in BiFe0.5Co0.5O3 films. Appl. Phys. A 120, 239–246 (2015). https://doi.org/10.1007/s00339-015-9158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9158-4

Keywords

Navigation