Skip to main content

Advertisement

Log in

A novel method for fabrication of alumina foams with ellipsoidal aligned oriented pores

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, alumina foams with oriented pores were fabricated; using alumina as starting material and colloidal silica and albumin as binders via sponge replica method. Different processing parameters such as tension, chemical and thermal setting were performed for alumina foam forming. Moreover, porosity, orientation and compressive strength of the foams that fabricated in a thermal setting condition were investigated. Results showed that with the increase in compressive load during forming cause to variation of pores’ shape from spherical to ellipsoidal. In addition, the apparent densities of the samples were increased from 0.225 to 0.314 g/cm3. Moreover, compressive strength of samples was increased from 1.02 for spherical pore shaped to 2.72 and 3.71 MPa for pore aligned in major and minor axes of ellipsoid, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Lemes-Rachadel, G.S. Garcia, R.A.F. Machado, D. Hotza, J.C.D. Da Costa, Current developments of mixed conducting membranes on porous substrates. Mater. Res. 44, 1439–1516 (2013)

    Google Scholar 

  2. W. Acchar, F.B.M. Souza, E.G. Ramalho, W.L. Torquato, Mechanical characterization of cellular ceramics. Mater. Sci. Eng. A 513–514, 340–343 (2009)

    Article  Google Scholar 

  3. K. Prabhakaran, A. Melkeri, N.M. Gokhale, S.C. Sharma, Preparation of macroporous alumina ceramics using wheat particles as gelling and pore forming agent. Ceram. Int. 33, 77–81 (2007)

    Article  Google Scholar 

  4. A.B. Sifontes, M. Urbina, F. Fajardo, L. Melo, M. Mediavilla, N. Carrion, J.L. Brito, Preparation of γ-alumina ceramic foams employing hydrophilated polyester polyurethane sponges. J. Mater. Sci. 44, 4507–4509 (2009)

    Article  ADS  Google Scholar 

  5. A. Hadi, S. Baghshahi, R. Emadi, S. Naghavi, Different pore size alumina foams and study of their physical and mechanical properties. Mater. Sci. Eng. 132, 340–343 (2009)

    Google Scholar 

  6. S. Akpinar, I.A. Altun, K. Onel, Effects of SiC addition on the structure and properties of reticulated porous mullite ceramics. J. Eur. Ceram. Soc. 30, 2727–2734 (2010)

    Article  Google Scholar 

  7. X. Zhu, D. Jiang, S. Tan, Improvement in the strength of reticulated porous ceramics by vacuum degassing. Mater. Lett. 51, 363–367 (2001)

    Article  Google Scholar 

  8. T.D. Senguttuvan, H.S. Kalsi, S.K. Sharda, B.K. Das, Sintering behavior of alumina rich cordierite porous ceramics. Mater. Chem. Phys. 67, 146–150 (2001)

    Article  Google Scholar 

  9. J. Vicente, F. Topin, J.V. Daurelle, Open celled material structural properties measurement: from morphology to transport properties. Mater. Trans. 47, 2195–2202 (2006)

    Article  Google Scholar 

  10. J. Ordonez-Miranda, J.J. Alvarado-Gil, Effect of the pore shape on the thermal conductivity of porous media. J. Mater. Sci. 47, 6733–6740 (2012)

    Article  ADS  Google Scholar 

  11. W.J. Lee, Y.J. Cho, H.S. Lee, I.M. Park, Y.H. Park, Effect of pore morphology on elastic, heat conduction and thermal shock fracture behaviors of porous ceramics. Procedia Eng. 10, 2459–2463 (2011)

    Article  Google Scholar 

  12. S. Deville, E. Saiz, A.P. Tomsia, Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27, 5480–5489 (2006)

    Article  Google Scholar 

  13. J.E. Gough, D.C. Clupper, L.L. Hench, Osteoblast responses to tape cast and sintered bioactive glass ceramics. J. Biomed. Mater. Res. A 69, 621–628 (2004)

    Article  Google Scholar 

  14. A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, Processing routes to macroporous ceramics: a review. J. Am. Ceram. Soc. 89, 1771–1789 (2006)

    Article  Google Scholar 

  15. M. Montero, T. Molina, M. Szafran, R. Moreno, M.I. Nieto, Alumina porous nanomaterials obtained by colloidal processing using d-fructose as dispersant and porosity promoter. Ceram. Int. 38, 2779–2784 (2012)

    Article  Google Scholar 

  16. M.J. Ghaderi, M. Shafiee Afarani, G.H. Roudini, Synthesis of alumina porous supports via different compaction routes: vibration and pressing. J. Chem. Tech. Metall. 48, 289–295 (2013)

    Google Scholar 

  17. N. Heydarian Dehkordi, M. Shayesteh, M. Shafiee Afarani, A. Samimi, Effect of ammonium nitrate on microstructure and permeability characteristics of tubular alumina support using slip casting fabrication method. J. Ceram. Proc. Res. 14, 472–475 (2013)

    Google Scholar 

  18. ZhH Wen, YSh Han, L. Liang, J.B. Li, Preparation of porous ceramics with controllable pore sizes in an easy and low-cost way. Mater. Charact. 59, 1335–1338 (2008)

    Article  Google Scholar 

  19. A. Erol, I. Yildiz, A. Yonetken, Production and characterization of alumina based ceramic filter by using simple sponge. Technology 14, 75–81 (2011)

    Google Scholar 

  20. A.B. Sifontes, M. Urbeina, F. Fajardo, L. Melo, L. Garcia, M. Mediavilla, N. Carrion, J.L. Brito, P. Hernandez, R. Solano, G. Mejias, A. Quintero, Prepartion of γ-Alumina foams of high surface area employing the polyurethane sponge replica method. Latin Am. Appl. Res. 40, 185–191 (2010)

    Google Scholar 

  21. S. Jia, L. Liu, W. Pan, G. Meng, Ch. Duan, L. Zhang, Zh Xiong, J. Liu, Oriented cartilage extracellular matrix-derived scaffold for cartilage tissue engineering. J. Biosci. Bioeng. 113, 647–653 (2012)

    Article  Google Scholar 

  22. X. Liu, M.N. Rahaman, Q. Fu, Oriented bioactive glass (13–93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: microstructure and mechanical response. Acta Biomater. 7, 406–416 (2011)

    Article  Google Scholar 

  23. Y.W. Moon, K.H. Shin, Y.H. Koh, W.Y. Choi, H.E. Kim, Porous alumina ceramics with highly aligned pores by heat-treating extruded alumina/camphene body at temperature near its solidification point. J. Eur. Ceram. Soc. 32, 1029–1034 (2012)

    Article  Google Scholar 

  24. L.M. Mathieu, T.L. Mueller, P.E. Bourban, D.P. Pioletti, R.E. Muller, J.A. Manson, Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27, 905–916 (2006)

    Article  Google Scholar 

  25. Y. Zhang, F. Yang, K. Liu, H. Shen, Y. Zhu, W. Zhang, W. Liu, S. Wang, Y. Cao, G. Zhou, The impact of PLGA scaffold orientation on in vitro cartilage regeneration. Biomaterials 33, 2926–2935 (2012)

    Article  Google Scholar 

  26. Q. Fu, N. Rahaman, M., Bal, B.S., F. Brown, R., In vitro cellular response to hydroxyapatite scaffolds with oriented pore architectures. Mater. Sci. Eng. C 29, 2147–2153 (2009)

    Article  Google Scholar 

  27. J. Ordonez-Miranda, J.J. Alvarado-Gil, Effect of the pore shape on the thermal conductivity of porous media. J. Mater. Sci. 47, 6733–6740 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Shafiee Afarani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahed, M., Shafiee Afarani, M. & Mohebbi-Kalhori, D. A novel method for fabrication of alumina foams with ellipsoidal aligned oriented pores. Appl. Phys. A 120, 215–220 (2015). https://doi.org/10.1007/s00339-015-9153-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9153-9

Keywords

Navigation