Skip to main content
Log in

A comparison of acoustic levitation with microgravity processing for containerless solidification of ternary Al–Cu–Sn alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The containerless rapid solidification of liquid ternary Al–5 %Cu–65 %Sn immiscible alloy was accomplished at both ultrasonic levitation and free fall conditions. A maximum undercooling of 185 K (0.22 T L) was obtained for the ultrasonically levitated alloy melt at a cooling rate of about 122 K s−1. Meanwhile, the cooling rate of alloy droplets in drop tube varied from 102 to 104 K s−1. The macrosegregation was effectively suppressed through the complex melt flow under ultrasonic levitation condition. In contrast, macrosegregation became conspicuous and core–shell structures with different layers were formed during free fall. The microstructure formation mechanisms during rapid solidification at containerless states were investigated in comparison with the conventional static solidification process. It was found that the liquid phase separation and structural growth kinetics may be modulated by controlling both alloy undercooling and cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Demyanchuk, S.A. Wieczorek, J. Chem. Phys. 121, 1141 (2004)

    Article  ADS  Google Scholar 

  2. H. Tang, L.C. Wrobel, Z. Fan, Mater. Des. 27, 1065 (2006)

    Article  Google Scholar 

  3. N. Yan, W.L. Wang, Z.C. Xia et al., Sci. China Phys. Mech. Astron 57, 393 (2014)

    Article  ADS  Google Scholar 

  4. O. Akinlade, A.O. Boyo, B.R. Ijaduola, J. Alloys Compd. 290, 191 (1999)

    Article  Google Scholar 

  5. L. Bourgeois, J.F. Nie, B.C. Muddle, Phil. Mag. 85, 3487 (2005)

    Article  ADS  Google Scholar 

  6. D. Mirkovic, J. Gröbner, R. Schmid-Fetzer, Acta Mater. 56, 5214 (2008)

    Article  Google Scholar 

  7. J. Mu, Z.W. Zhu, H.F. Zhang et al., Acta Mater. 58, 6267 (2010)

    Article  Google Scholar 

  8. C.J. Kong, P.D. Brown, S.J. Harris et al., Mater. Sci. Eng., A 454–455, 252 (2007)

    Article  Google Scholar 

  9. H. Flandorfer, M. Rechchach, A. Elmahfoudi et al., J. Chem. Thermodyn. 43, 1612 (2011)

    Article  Google Scholar 

  10. J.C. Hung, C.C. Lin, Mater. Des. 45, 412 (2013)

    Article  Google Scholar 

  11. N. Yan, W.L. Wang, S.B. Luo et al., Appl. Phys. A 113, 763 (2013)

    Article  ADS  Google Scholar 

  12. X. Fang, Z. Fan, Scripta Mater. 54, 789 (2006)

    Article  Google Scholar 

  13. H.R. Kotadia, E. Doernberg, J.B. Patel et al., Metall. Mater. Trans. A 40, 2202 (2009)

    Article  Google Scholar 

  14. J. He, H.Q. Li, B.J. Yang et al., J. Alloys Compd. 489, 535 (2010)

    Article  Google Scholar 

  15. H.R. Kotadia, A. Das, E. Doernberg et al., Mater. Chem. Phys. 131, 241 (2011)

    Article  Google Scholar 

  16. N. Yan, Z.Y. Hong, D.L. Geng et al., J. Alloys Compd. 544, 6 (2012)

    Article  Google Scholar 

  17. X.B. Ma, H.P. Wang, K. Zhou et al., Appl. Phys. Lett. 103, 104101 (2013)

    Article  ADS  Google Scholar 

  18. S.K. Chung, E.H. Trinh, Phys. Fluids 12, 249 (2000)

    Article  MATH  ADS  Google Scholar 

  19. Y. Abe, Y. Tamamoto, D. Hyuga et al., Ann. N. Y. Acad. Sci. 1161, 211 (2009)

    Article  ADS  Google Scholar 

  20. W.L. Wang, Z.Q. Li, B. Wei, Acta Mater. 59, 5482 (2011)

    Article  Google Scholar 

  21. D. Mirkovic, J. Gröbner, R. Schmid-Fetzer, Mater. Sci. Eng., A 487, 456 (2008)

    Article  Google Scholar 

  22. W.T. Shi, R.E. Apfel, J. Acoust. Soc. Am. 99, 1977 (1996)

    Article  ADS  Google Scholar 

  23. E. Lee, S. Ahn, Acta Metall. Mater. 42, 3231 (1994)

    Article  Google Scholar 

  24. C.J. Smithells, Metals Reference Book, 6th edn. (Butterworth, London, 1984)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. W. J. Xie and Dr. W. L. Wang for their help with the experiments and discussions. This work was financially supported by National Natural Science Foundation of China under Grant Nos. 51327901, 51301138 and 11104223, Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20126102120064 and Fundamental Research Funds for the Central Universities under Grant No. 3102014KYJD044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, N., Hong, Z.Y., Geng, D.L. et al. A comparison of acoustic levitation with microgravity processing for containerless solidification of ternary Al–Cu–Sn alloy. Appl. Phys. A 120, 207–213 (2015). https://doi.org/10.1007/s00339-015-9151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9151-y

Keywords

Navigation